

\because
!

Digitized by GOOgle

RATIONAL
 RECREATIONS.

VOLUME THE THIRD.

GONTAINING
ELECTRICAL and MAGNETICAL
EXPERIMENTS.

$$
\begin{aligned}
& \text { M品 }
\end{aligned}
$$

RATIONAL

RECREATIONS,

 In which the PRINCIPLES of$\begin{array}{lllllll}\mathbf{N} & \mathrm{U} & \mathrm{M} & \mathrm{B} & \mathrm{E} & \mathrm{R} & \mathbf{S}\end{array}$
"and

NATURAL PHILOSOPHY

Are clearly and copiounly elucidated, BYASERIESOF

EASY, ENTERTAINING, INTERESTING
EXPERIMENTS.

Among which are
All thofe commonly performed with the Cards.

> By W. H O O P E R, M. D.
V O L. III.

$$
\text { L } \quad \mathbf{O} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{O} \quad \mathrm{~N},
$$

Printed for L. Davis, Holborn ; J. Robson, New Bond-ftreet; B. Law, Aveinary-lane; and G. Robinson, Pater-nofter-row. MDCCLXXIV.
-

DESCRIPTION of the PLATES.

$$
\text { P L A T E I. p. } 16
$$

THE electric machine. The two boards a, a, are equal and parallel : the uppermoft has a groove, in which one of the pillars is moveable; the other, d, is fixed. The brafs arm c fupports the axis d that is fixed in the globe; f is the rubber, fupported by an axis in the wooden circle $g ; b$ is a fteel fring, regulated by a fcrew i; k is the prime conductor, confifting of a hollow veffel of polifhed copper, and receives its electricity by means of pointed wires m, and the arched brafs rod l. The globe is turned by the wheel fixed in the moveable frame e. The chain n connects the rubber with the floor, when pofitive electricity is required.

$$
\text { P L.A T E II. p. }{ }^{24 .}
$$

- The faguare figure b reprefents a plated coat of glafs. $c, d, e, f, g, b, i, j, k$, are feveral fort; of jars. On the fland, near c, are placed on a Vol. III.
glafs the cork-balls, that ferve as an electrometer. From the end of the conductor, at l, hang the bells and knobs of brafs, for the magic dance; s is a metal rod for taking fparks from the conductor.

$$
\text { P L A T E III. p. } 104 .
$$

Fig. 1, reprefents the row of tin-foil for exhibiting the luminous characters.

Fig. 2. The electrical battery, confifting of fixty-four gfafs jars, which are connected by brafs rods, that run through wires in each of them, and the rods are connected by a chain laid over them:

$$
\text { P L A T E IV. p. } 90 .
$$

Fig. I. The electrometer. A is a light rod that turns on the center of the femicircle B, and has at its extremity a cork-ball $\mathbf{C} ; \mathbf{D}$ is the pillar that fupports the rod.

Fig. 2. The fulmineous conductor : a is an oblong pole, b a copper veffel in form of a funnel, c a flender rod, terminated with a pointed wire; d is a wire that defcends at a foot diftance from the building, and is carried into the room where the experiments are to be performed.

Fig. 3. The electric branch and table: a, b, c, d, is the table, placed againt the partition \mathbf{X}.

The

The branch $A B C$ is joined at A to the prine conductor in the other room; e and f are two links that come from two chains which communicate with the two fides of a jar or battery,' and are concealed in the table.

Fig. 4. The apparatus for conducting electricity from a kite: a is the ftring of the kite, wound upon the reel $b ; c$ is a copper funnel, from which goes the metal rod d, that has a knob; i is the ftaff that fupports the funnel and reel; f is the chain by which the electricity is condueted to the ground.

$$
\text { P L A TE V. p. } 128 .
$$

Fig. 1. AB and CD are the poles of two magnets, and the dotted lines fhow the direction of the magnetic eflluvia.

Fig. 2 and 3. The magnetic perfpective, In Fig. $3, \mathbf{B}$ is a magnetic needle, placed on an ivory circle C, that refts on the object-glafs D:A is the eye-glafs, by which the pofition of the needle is more clearly diftinguifhed.

Fig. 4. The magnetic wand. C is a magnetic bar, which is inclofed in the hollow wand AB.

$$
\text { PLATE VI. p. } 122 .
$$

The method of making artificial magnets: Fig. 1, the poker rubbed by the tongs. Fig. 2, 3,

22 and
and 4 , the manner of giving the bars the vertical touch. Fig. 5, the method of giving them the horizontal touch. Fig. 6, the manner of difpofing the bars in a cafe.

$$
\text { P L A T E VII. p. } 140
$$

Fig. I. The bouquets, one of which is to be placed in the vafe E, at the bottom of the box ABCD.

Fig. 2. The magnetic dial. A is a circular border that turns quite free on the ftand $\mathbf{B} ; \mathbf{C a}$ dial of pafteboard, that moves in the circular border; la magnetic needle, which is the index to the dial; P a pin, that fhows where the magnetic bar Fig. 3, is placed, under the dial.

Fig. 4. The dial for the magnetic cards, which is to be placed in the circular border of the laft figure.

$$
\text { P L A T E VIII. p. } 148
$$

Fig. i. M and N the two boxes for the dexterous painter; T is a pivot, on which the circle of pafteboard F is placed, in the box $\mathrm{N} ; \mathrm{O}, \mathrm{P}$, Q, R, are four buards, on which the fame fubjects are painted as on the pafteboard circle ; V is an artificial magnet concealed in each of the boards.

PLATE

$$
\text { P L A T E IX. p. } 154
$$

Fig. I. The apparatus for the cylindric oracle. ABCD is the cylinder, in which is concealed the magnet H , at EF; C is a circle to be placed on the cylinder, and has a touched needle for an index.
Fig. 2. The box in which one of the four fquare pieces Fig. 3, that have each a magnet in a different direction, is to be placed.

Fig. 4. The dial to be placed over the box, Fig. 2.

$$
\text { P L A T E X. p. } \mathbf{1 5 5}_{5}
$$

Fig. I. An ewer placed on a ftand B, in which is a drawer D .

Fig. 2. The infide of the ewer, in the middle of which is an inverted tin cone: at H is a mirror.

Fig. 3. A pafteboard circle that is placed at $Q R$ in the laft figure. This circle contains a touched needle, and is divided into four parts, in three of which are heads with different dreffes.
Fig. 4. Four fquare pieces of wood, each of which contains a magnet in a different pofition, and in thre of them are the fame figures as on the pafteboard.

Fig. 5. The magician's circles. The circle A has a hand that communicates with a movement in the box. The index of the circle B is a 23 touched
vi. DESGRIPTION: of
tquched needle : C the crofs piece by which the two circles are connected.

Fig. 6. The movement contained in the boxes under the two circles and the crof's piece betweenthem.

$$
\text { P L A T E XI. p. } 168
$$

Fig. 1. The box and dice. C A a hollow pedeftal. on which is the circle B, marked with the numbers on two dice, and at its center is a pivot, on which turns a touched needle; M a fimilar circle on the bottom of the box; DE is a vafe, in which there are different divifions $\mathrm{H}, \mathrm{G}, \mathrm{F}$. In the part $I \mathrm{~K}$ is placed the piece $S T$.

Fig. 2, is a box, in which are placed the twa cafes Fig. 3 and 4, that have each a magnet at O_{2} and in each of which are placed two flowers; GEO is the fection of thefe two cafes.

P L A TE XII. p. 176.

Fig. I. A B CD a box that contains fix different pieces of metal, which have each a magnet in a different pofition,

Fig. 2. The circles that are placed at the end of a perfpective, and have the initials of the different metals.

Fig. 3. The box for the magnetic oracle. A, B, C, the three divifions of the box: in A and C are eight fanall rundlets marked with different numbers.

Fig. 4. The magnets to be fixed in eight fmall tablets,
tablets, that are to be put in the part B of the laft figure.

Fig. 5. A circle, with a touched needie for an index, which is to be placed on the part B of Fig. 3, over one of the tablets, in which a magnet is concealed,

Fig. 6. ABCD is the box for the magical cards, in the top of which is an opening of the fize of a card. At the center of this box is a pivot, on which is placed a circle that has two cards painted on it, and a touched needle at its center. Between the two figures of the box is the magnetic wand.

$$
\text { P L A T E XIII. p. } 180 .
$$

Fig. 1. The magnetic planetarium. The central circle has an index A, that communicates with another circle underneath; and round it are wrote feven queftions. Round the feven leffer circles are wrote words that form anfwers to thofe queftions; and within thefe circles are drawn the characters of the five planets, with the earth and moop. On the center of each of thefe circles turns a magnetic needle, and the dotted lines in each of them fhow the pofition of the magnets in feven other circles on the bottom of the box.

Fig. 2, fhows the infide of the box, and the two indexes at top; by the loweft is turned the circle, fixed on a pivot at the bottom of the box; and the other is placed againft one of the months infribed round the circle. O and P are two of the needles to be placed on the finall circles.

PLATE

viii

DESCRIPTION of

$$
\text { P L A T E XIV. p. } 192 .
$$

Fig I and 2. The magnetical table. ABCD, Fig. i, the bottom of the table : at A, on the top of the table, is a circle, that furrounds "a bafon, placed over P , where is the machinery, Fig. 3, which confifts of a wheel $Q R$, a barrel X, a fmall toothed wheel T , and the magnetic bar $\mathrm{X} \mathbf{Y}$. MO is a magnetic bar moveable on a pulley, round which goes a ftring, that is faftened at one end to the fpring \mathbf{N}, and goes over another pulley at A. 'OP, at the part of the table next AB , is a magnetic bar, moveable on a pivot at P. The motion of this bar is regulated by the fpring R. Round the pulley T goes a ftring, that paffes ower another pulley at S. $A B$, near the part $A R$, is the magnetic roller, which is drawn backward and forward by a fring that paffes over the pullies B and A, and is defcribed in PI. XVII. Fig. 5 . - Fig. 2. AB, the top of the table, on which is placed the bafon: R, F, G, H, the legs, which are hollow, \mathbf{L}, L, the crofs pieces, MN the ftep : thefe are likewife all hollow, and communicate with the other fide of the partition W .
Fig. 3 and 4, are two other circles to be placed round the bafon on the table.
P. L A T E XV. p. 189.

The fcale to be placed againft the back of the partition W. C is the pulley over which the flring
fring goes; D the weight; and EF the index. The divifions of this fcale correfpond to thofe on the three circles in the laft plate, Fig. 1,42 and 5 .

$$
\text { P L A T E XVI. p. } 204
$$

The apparatus for the fagacious fwan. Fig.... YX a hollow pedeftal, on which is placed the bafon A, and round it are fix vafes; B is a hollow egg, placed on a ftand C, that is alfo hollow; MAO is the magnet and wheel placed in the pedeftal. The figures a fhow the pofition of the vafes.

Fig. 2. The machinery for moving the magnet, which is regulated by one of the etwees Y, and the cylinder F, Fig. 32 placed in the egg ,B and the ftand \mathbf{C}.

$$
\text { PLATE XVII: p. } 220 .
$$

Fig: 1. The communicative bell. A B a copper box, E the infide of the box, F the bell, D a magnet, that is placed on a pivot, and ftrikes the bell.

Fig. 2. The magnetic balance; the fcales of which are to be placed over the magnetic table at the part where is the magnet MO.

Fig.3. The movement of the fympatheric dials. ABCD the wheels and piniens, under which is the barrel A, F the ll y, H the plate to which the 8 move-
movement is fixed, LNM a catch of fteel that is touched.

Fig. 4. $Q R$ is a cafe in which each of the dials is to be placed.

Fig. 5. The magnetic roller, in the twelve circles of which are placed magnets in different pofitions, marked with the letters of the alphabet.

PLATE XVIII. p. 232.

Fig. 1. The magician's box. A B is the bafe of the box, in the top of which is a hole E , about the fize of a card: in this bafe is placed the circle OP, Fig. 3, that has five cards painted on it ; contains a magnet QR , and is moveable on a pivot.

Fig. 2, is the body of the box, which confifts of four inclined planes of glafs; and in a hole at the top V, is fixed a convex lens. This box is placed on the magnetic table, by which either of the cards on the circle are brought under the hole.
Fig. 4. The myftical dial : this dial is divided into ten equal parts, and at its center is a touched needle, which is regulated by the magnetic table.

Fig. 5. The box for the intelligent fly. At the center of the box is a pivot, on which is placed. a touched needle L, that has at one end of ir an enamelled fly; over this needle is placed the patteboard circle $A B C D$, on which ten letters are wrote,

PLATE

$$
\begin{aligned}
& \text { PLATE XIX. P: } 238 \text {. }
\end{aligned}
$$

Fig. 1. The box with the cight tablets, on which are wrote the multifarious verfe, and in each of which is concealed a magnet, in a different direction.

Fig. 2. A board of the fame fize of the foregoing box, on which are drawn eight circles that have each the fame words wrote round them as are on the tablets; and on the center of each of thefe circles is fixed a magnetic needle; this board is to be placed over the box.
Fig. 3. Four plates of glafs, placed in an in-: clitied pofition over the board, and in its top are two lenfes O, O.

$$
\text { PLATE XX. p. } 246
$$

Fig. r. The communicative mirror. AB is a hollow pedeftal, in which is a hole at L, and over that is placed a ftand, compofed of four plates of glafs CD, and on that is fixed a tube E, including another tube F . There is a hole throughthe tubes, next the top of the fland, and againft it is placed an inclined mirror M, by which the eye at G fees the pafteboard circle Fig. 2, fixed on a pivot at the bottom of the box.

Fig. 3. A box of the fame fize as the pedeftal juft deferibed. In this box is placed one of the three tablets X, Y, Z, that have each a magnet in a different pofition, and over each of them is paft-
xii: DESCRIPTION, \&c.
ed a card of the fame fort with thofe on the circle. When this box is placed in the pedeftal, the needle in the circle conforms to the pofition of the magnet in the tablet.
-Fig. 4. The box of dice by reflection. ABCD the box, whofe top and fides are of glafs. I L two hoHow cubes. At the end of the box are fliders that draw up as in Fig. 5, and at M is a fmall moveable piece that covers a hole. $O P$, and $\mathbf{R Q}$, are two inclined mirrors placed in the box. The botton of each of the cubes is divided into four equal parts, as in Fig. 8, and under each of them is placed a brafs ftand, Fig. 6, difpofed as in Fig. 7 , and on the ftand is a pivot that holds two needles, one of brafs, the other of feel that is touched.

RATIONAL RECREATIONS.

ELECTRIGETY.
 DEFINITIONS.

7. $T^{\text {LECTRREITY }}$ is that property in bodies which enables them, when excited by friction or heat, to attract other light bodies, and produce an efflavium that is fometimes luminous, attended with a fnapping noife, and a faint phofphoreal fmell.
8. Electricity is called the fecond of the three fpecies of attraction, gravity being the firf, and magnetifm the third.
9. Thofe bodies that produce electricity by friction or heat, are called electrics, and are faid to be electric per \int e.
10. Thofe bodies that receive and comVol:III.

B muni-
municate electrieity are called conductors, and thofe that repel it are called non-conductors.
5. All bodies that are made to contain more than their natural quantity of electri--city are faid to be electrified pofitively, and thofe from whom part of their natural quantity is taken away, are faid to be electrified negatively. Thefe two electricities being firlt produced, one of them from glafs, and the other from amber or rofin, the former was called vitreous, and the latter refinous electricity.
6. When a quantity of electricity is communicated to any body, it is faid to be ${ }^{t}$ charged.
7. The effect of the explafion of a charged body, that is, the difcharge of its electricity on any other body, it is called the electric fhock.
8. When any body is prevented from communicating with the earth, by the interpofition of an electric body, it is faid to be infulated.

9. The

- 9. The refiduum of a charged body, as a jar or battery, is that part of the charge which remains in the body after the firft difcharge, and by which it will give a fecond fhock, though lefs than the firf.
AP H OR ISMS.

1. All fubftances are diftinguifhed into electrics per $\int e$, and non-electrics: the latter of which are conductors, and the former non-conductors.
\therefore 2. All kinds of metals, femi-metals, 'water, charcoal, and other bodies of a fimilar nature, are conductors; and all other bodies, whether mineral, vegetable, or ani 4 mal, are non-conductors: : many of the latter, hawever, may be made to conduct electricity by being heated to a certain degree.
2. Pofitive electricity is produced by the friction of uninfulated glafs tubes or globes ;: and negative electricity is \times produced, either from the rubber of thofe B 2 bodies,
bodies, or from the friction of infulated glafs bodies; or lafly, from the rubbing of globes or fticks of wax, fulphur, and other bodies of a fimilar nature.
3. It follows from the laft aphorifm that the electricity of the excited body and the rubber, are always oppofite, that is, if that of the excited body be pofitive, that of the rubber will be negative; and the contrary. Thofe two bodies, moreover, will act on each other with greater force than any other body.
4. In charging any body; as a coated phial, if one fide communicate with the excited body, and the other with the rubber, the electricity of the two fides of the charged body will be oppofite.
5. There is a ftrong attraction between the two electricities on the oppofite fides. of a glafs, fo that when they are made to. communicate by means of a conductor, they will be both difcharged with a flaif of light and a fnapping noife.
6. The fubftance of glafs is impervious.

RECREATIONS.

to electricity; but if the glafs be thin, and the electricity on the oppofite fides be very Atrong, that is, if the glafs be overcharged, the oppofite electricities will force a paffage *hrough the glafs.
8. If an excited electric be in contact with an infulated conductor, the former will communicate its power to the latter, which will then attract light bodies, and give a fhock, in the fame manner as the excited electric.
9. The flafh of light from a body to which electricity has been communicated, is more denfe, and the found louder, than from one that is excited; for the conducfor parts with all its electricity at once, but the excited body with only fo much ${ }^{2 s}$ is at, or near, the part that is touched.
10. If infulated bodies have been attracted by, and have touched an excited body, they will, fion after, be repelled by that body, and will repel each other; nor will they return to the excited electrie till after they

$$
\text { B } 3 \text { have }
$$

haye touched fome other body that com* municates with the earth..
II. When an infulated conductor is brought within the fphere of action of an excited body, it requires the electricity $\mathrm{op}_{\text {r }}$ pofite to that of the body, and the nearer it is brought the greater quantity it acquires, till the one receive a fpark from the other, and then the electricity of both is difcharged.
12. The electric explofion always takes the fhorteft courfe through the beft conductors.
13. If the explofion between two bodies be interrupted by a non-conductor of a moderate denfity, the difcharge will force a paffage through it, in fuch manner as to leave the appearance of a fudden expanfion of the air about the center of the ex-. plofion.
14. If an infulated conductor be pointed, or if an uninfulated conductor that is pointed, be brought very near the earth, there will be no other appearance of electricity

RECREATIONS.

7
tricity during the time of excitation, than a light, and a current of air, that may be perceived to come from thofe points.
15. The electric attraction acts in vacuo.
16. Electricity and lightning are in alf refpects of a fimilar nature. All the effects of lightning may be imitated by elec. tricity, and all the experiments in electricity may be performed by lightning; brought down from the clouds by means of an infulated pointed rod of metal.

8

 RATIONAE- ELECTRYCAL APPARATUS.

ADefcription of all the machinery that has been ufed in electrical experiments, would Gll a large volume, We fhall here confine ourfelves to fuch as are of general ufe, and neceffary, in particular, to the following recreations: fuch are the revolving globe and rubber, with its prime conductor, ufually falled an electric ma, thine; the electric battery ; the fulmineous cotduclor; and the electrometer.
$\therefore \therefore 3$
: : The conftruction of the electric machine is as follows*. Let a a, Plate I. be two

* A great number of different electrical machines have been contrived. This appears to be the invention of Dr. Prieftley, from whofe Hiftory of Electricity we have extracted the defcription of the following apparatus, and the fubfequent recreations, fome few articles excepted; for that valuable work contains every material difcovery or improveqment that has been hitherto made in this frience. A machine of a more fimple conftruction will be defcribed further on.

ftrong

firong boards of mahogany, the lower about an inch on each fide broader than the other : they are to be an equal length, parallel with each other, and about four inches afunder. In the upper board is a greove, that goes almoft its whole lengths The pillars are of baked wood: that mark. ed b is immoveable, being fixed to the upper and lower boards; the other llides in the groove juft mentioned, that it may receive globes or cylinders of different dis menfion * thyt is only neceffary when they have axees, In each pf: the pillars there are holes at equal diftances, by means of which the globes may be placed at a height adapted! to their bulk. Thefe pila

* It is not yet determined what Kort of glafs is moft proper for thefe globes and cylinders. The beft fint is cominonly ufed, but Dr: Prieftley feem: to think, that compon bottle metal is the molt eligible. Some operators line their globes or cylinders with wax, or fome other electric fubfance; which in large globes may be of good ufe; but when they are fmall, no material advantage can be expected from any lining.
lans tate to be high enough to admíb two or more globes at the fame time: If two globes be fixed on one axis, four of a moderate fize may be ufed, and the wheel mary have feveral grooves for that purpofe. When a globe with one neck is ufed, as in the plate, a brafs arm c, with an open focket, is neceffary to fupport the axis beydnd the pulley : this part is alfo contrived to puthigher or lower, together with the brafo focket in which the axis turns. The axis d, is made to come quite through the pillar, that it may be turned by a handle, without the wheel, at the option of the operator. As the frame ferews to the table, it may be placed at dif. ferent diftances from the wheel, in proportion to the length of the ftring, in different ftates of the air. The wheel is fixed in a feparate frame e, by which means it may be placed in any fituation, with refpect to the pulley, and be turned to one fide, of as to prevent the parts of the ftring from cutting each other, The back
part

RHGREATHONS. \quad R

part of this frame is fupported by asfepat rate fọot.

The rubber f, confits of a hollow piece of copper, ftuffed with horfe hair, and covered with a bafil \%kin. It is fupm ported by a focket, that receives the cylindrical axis of a round, flat piece of baked wood g, the oppofite patt of which is inferted into the focket of a bent fteal fpring $h \dagger$. . Thefe parts are eafily feparated; fo that the rubber, on the piese of wood by which it is infulated, may be

* Some electric machines are turned by a brafs toothed wheel and pinion, inclofed in a box, 'which has a more elegant'appearance; but thefe wheds are fubject to accidents; which: aro not fot eafily repaired as thofe that happen to a ftring. i: ;
t If the rubber be very narrow, fome parts of the globe will pafs without a fufficient friction to remedy this inconyenience the hand, when dry, may be beld to the globe, juft befora the rubber, to fupply the deficiency. There fhould be no fharp edges or angles about the rubber, for they would make its infulation, which is a matter of great candquence, ineffectuat, v:\% : \& ! y
chianged at pleafure. The pofition of the fpring may be altered two ways: it may either be llipped along the groove, or moved in the contrary direction, fo as to give it every defireable pofition with regand to the globe or cylinder : and it is, befides, furnifhed with a freew i, which makes it prefs harder: or lighter, as the experiment may require.
\because The prime conductor k^{*}, is a hollow wefled of polifhed copper, in the form of a
* For common purpofes a fmall conductor is mort convenient; but when a ftrong fpark is wanted, it is proper to have a large conductor ready, which may be placed in contact with the fmaller. But whatever be the fize of the conductor, that part which is moft remote from the globe fhould be round, and much larger than the reft : for the effort of the eleetric matter to fly off, is atways the greateft at the greateft diftance from the globe ; and from that part the longeft and Arongeft fparks may be drawn.

The largeft and maft pungent fparks are drawn from any conductor along an eleCtric fubftance. Thus if the conductor be fupported by pillars of
glafs
peax, fupported, hy a pillar on a firm bafis of baked wood*; and it receives is
glafs or baked wood, the longert fparks will be raken clofe to the pillar.

If pars of the conduetor be concave, a jemarkable layge, ftrong; and undivided fpark may be drawn from the concavity. Where the furface is convex, the fpark is more apt to be weak and divided.

* Baked wood is found by experience to form a perfecti nfulation, but it requires to; be baked again at different times, efpectally if it be kept in a damp. gituation. A hollow pillar of glafs, lined with féaling wax, will anfwer, exceeding well, and does not require fo much attention. The beft method of lining a glafs, is to diffolve fo much fealingwax, in fpirit of wine, as will make it of a diue oonfiftence. It may then be laid on the glafs, by a trufh, with very little trouble.
Dr. Prieftley advifes electricians to make all their fands and foold for infulation, of baked wood; as it may be eafily turned into any form; as it, insulates better than glafs, and is not fo brittle. But care muft be taken that the wood be thoroughly baked, evers till it be quite brown: it will not then be very apt to collect moifture from the air: if it hould, a little warming and rabbing wit be fufficient to expel that moifure. At moft, it can on!y be neceffary to boil it in linfeed oil, or give it a fight coating of varnifh after it comes out of the
aif $\quad \mathrm{R}^{\prime} \mathrm{A}$ TEONAL
cleetricity by means of a long arched wirt, or rod of very foft brafs l, eafily bent into any thape, and raifed higher or lower as the globe may require: it is terminated by an open ring, in which are hung fome tharp-pointed wires or needles $m_{\text {; }}$ that play lightly on the globe when it is in motion.

IT.The body of the conductor is furnifhed with holes and fockets, for the infertion of metallic rods, to convey the fire wherever it is wanted; and for many other purpofes, incident to a courfe of electrical experiments. The conductor is by this trean fteady, and yet may be eafily put into any fituation. It collects the fire perfeelly well, and (what is: of the greateft confequence, though but little regarded) retains it equally every where.
oven. When this preparation is μ fed, it mult ${ }_{i}$ be well heated once more, immediately after the boiling.

When
.When pofitive electricity is wayted, a wire or chain, as is reprefented in the plate at n_{0} connects the rubber : with the table or floor. When negative electricity is weanted, that wire is comected with another conductor, fuch as that reprefented at t, Pl. II. while the conductor in Pl. I. is connected, by another wire or chain, with the table. If the rubber be made tolerably free from pointe, the negative podver will be as ftrong as the pofitive.
.. The principal advantages of this machine are that glafs veffels, or any ether electric body, of any fize or form, may be ufed, either with one or two necks. All the effential parts of the machine, as the globe, the frame, the wheal, the rubber, and the conductor, are quite feparate, and the pofition of them to each other may be varied in every manner poffible. The rubber has a complete infulation, by which mean the operator may command either the negative or pofitive power, and may change

16

 RATIONALchange them in an inflant. This conductor is feady, and eafily enlarged, by placing rods in the holes with which is is furnifhed, or by the conjunction of other conductors, in order to give larger fparks, \&c. It may be turned either with or without the wheel, fo that the operator may fit or fland to his work, at his option; and he may, with the utmoft eafe, manage both the machine and the other parts of the apparatus *.

When the air is dry, particularly when there is a frofi, and the wind is north or

- We are informed that Dr. Prieftley, fince the publication of his Hiftory, has contrived a windmills, to be placed on the top of his houfe, by which his electrical machine is occafionally turned. One or more globes excited by the force of a ftrong wind, mult doubtlefs produce a very great quantity of eledricity; and from that gentleman's extenfive knowledge of this feience, and his unr wearied application to the improvement of exparimental philofophy, the learned world has reafon to hope for fome further important difcoveries in electricity.

'

RECREATIONS.

eaf, there is fcarce any electric machine but will work very well. If the air be damp, make a large fire in the room where the machine ftands, and let the globe, and every thing about it, be made very dry : it will then work almoft as well as in the beft flate of the air.

To increafe the quantity of electric fire from a globe, let the rubber be a little moiftened, from time to time ; or rather, moiften the under fide of a loofe piece of leather, that may occafionally be put upon the rubber. But the moft powerful exciter is a little amalgam, made by rubbing mercury and thin pieces of lead or tinfoil together, in the palm of the hand. If a rubber be at any time placed perpendicular to the horizon, it will be neceffary to ufe a little tallow to make it flick. With this excellent refource, almoft all forts of weather become equally fit for electrical - experiments.
Vol. III.
C
A little

A little time after frefh amalgam has been put upon the rubber, and often at other times, if there be any foulnefs upon the curhion, and fometimes when there is none, there will be found upon the globe, fmall black fpots, of a hard rough fubftance, which grow continually larger, till a confiderable quantity of that matter be accumulated upon the furface. This muft be carefully picked off, or it will obftruct the excitation, and in a great meafure defeat the intended operation.

When the amaIgam has been ufed for fome time, there will be formed upon the rubber, a thick incruftation of the fame kind of black fubftance that is apt to adhere to the globe. This incruftation is a very great improvement of the rubber; for when once a confiderable body of it is formed, and it is a little moiftened or fcraped, as much fire will be produced if frefh amalgam were ufed; fo that it feems tofuperfede the further ufe of the amalgam.

As the electric matter is collected onlyat the rubber, it is neceffary that it have a commúnication with the common mafs of the earth, by means of good conductors. If, therefore, the table on which the machine ftands, or the floor of the room in which it is ufed, be very drý, little or no fire will be got, be the machine ever fo good. In this cafe it will be neceffary to connect the rubber, by means of chains or wires, with the floor, the ground, or even the next water, if the neighbouring ground be dry.

If the conductor be made perfectly well, and the air be dry, there will never be any lofs of fire from any part of it; for when the whole furface has received as high a charge as the machine can give, it will, in all places alike, perfectly refift all efforts to throw any more upon it, and the circulation of the fluid by the rubber will be ftopped, being balanced, as it were, byy equal forces. Or if it lofe, in all places
C 2
alike,
alike, the diffipation muft be invifible, This maxim almoft admits of ocular de-' monftration; for when the rubber is perfectly infulated, and the conductor has an opportunity of difcharging itfelf, the rubber will take fparks from a wire placed near it, very faft ; but 'when the conductor has but little opportunity of difeharging itfelf, it will take fewer of thofe fparks.

The larger the conductor is, the ftronger fparks it will give: for the greater the electric furface, the greater quantity of the electric atmofphere it contains, and the more fenfible its effect will be, when it is all difcharged at once. The conductor, however, may be made fo large, that the neceffary diffipation of the electric matter from its furface into the air, will be equal to the fupply from the machine, which will conflitute the maximum of the power of that machine, and which will be different in different ftates of the air.

To form a juft eftimate of the electric power of different machines, take two wires, with knobs of any fize, and fix one of them at the conductor of one of the machines, and the other wire about an inch or an inch and a half from it; and as the wheel turns, count the number of fparks that pafs between them in any given time. Fix the fame wires to the conductor of another machine (but if the fame conductor were ufed the trial would be more exact) and the difference between the number of fparks in the given time will determine the difference of ftrength in the two machines*.

* For common purpofes there are electric machines conftructed without either globe, cylinder, or wheel, as thus : let two upright pieces of wood. of about two feet long, be joined at bottom by a crofs piece, and let there be a gripe to faften them to a table, or any horizontal board. Againft the infide of each of the perpendicular pieces fix 2 leather cuhion, and let there be a hole made thro' each piece and culhion, oppofite to each other. Then take a plate of glafs, about a foot \{quare, and polifhed on both fides, through the middle of

The electric machine being thus completely adjufted, the operator will next want metal rods to conduct, and coated glafs jars or phials to retain and communicate the electric fire. Metallic rods, fuch as s, Plate II. ufed in taking farks from the conductor, for various purpofes, fhould have knobs, of different dimenfions,
which let a workman make a hole, of the fame fize with thofe in the pofts and cuflions: if thefe holes be about nine inches from the top, you may work the machine either fitting or ftanding. Thro' all the holes let an axis'be paffed, that has a handle at one end. The curhions are to prefs hard againt the glafs.

Next, provide a conductor, which may confift of a fmall iron rod, faftened by fealing-wax to an upright piece of wood, fupported by a glafs veffel of any fort; from the rod muft go a wire, at the end of which are to be two large needles, that communicate with the two fides of the glafs; and from each of the rubbers there muft go a chain to the floor or table. When pofitive electricity is wanted, the needles are to communicate with the glafs; and when negative electricity, with the cuthions. With this machine and a little care and practice, you will be enabled to perform all the common operations in electricity.
in proportion to the curvature of the conductor. If the knob be too finall, it will not difcharge the conductor at once, but by degrees, and with a lefs fenfible effect; whereas the fpark between broad furfaces is thick and ftrong.

The moft formidable part of the electric apparatus is the coated glafs, ufed in the Leyden experiment * and the battery. The form of the glafs is immaterial with refpect to the fhock; but for different experiments both plates and jars, of various fhapes and fizes, muft be ufed: The moft commodious form, for common ufe, is that of a jar, as wide as a perfon can conveniently grafp, and as tall as will ftand without danger of falling : perhaps about three inches and a half diameter, and about eight inches high. The mouth

[^0]fhould be pretty open, that it may be the more conveniently coated on the infide, as well as on the outfide, with tinfoil : but it will be generally moft convenient to have the mouth narrower than the belly, for then it may more eafily be kept clean and dry, and the cork, when one is wanted, will be eafier to manage. A jar thus prepared, of a moderate fize, is called the Leyden phial. But no electrician fhould be without jars of various forms and fizes. The figures of feveral of them are expreffed in Plate II. at c, d, e, f, g, b, i, j, and k. The form of a plated coat of glafs is re-. prefented at b.

The practice of coating jars is far preferable to that of putting water, or brafs fhavings, into them, which notonly makes them heavy; but incapable of being inverted; which is requifite in many experiments. Brafs duft, or leaden fhot, are, however, very convenient for fmall phials, and ferve very well where it is neceffary to remove the

RECREATIONS.

poating as foon as the jar as is charged, put in this cafe quickfilver will generally anfwer beft, The tinfoil may be put on either with pafte, gum-water, or bees wax. To coat the infide of veffels that have narfow mouths, moiften the infide with gumwater, and then pour fome brafs duft upon it: enough will ftick on to make an exceeding good coating, and will not eafily come off, unlefs fomething very hard rub againit it:

Being thus provided with a machine to produce, and jars to receive the electric matter; it will be proper, in the next place, to conftruct an electrometer, that you may know when your jars are fufficiently charged *: There have been
*The moft effectual method of charging a jar, is to connect the outfide, by means of wires, with the rubber, while the wire, proceeding from the infide, is in contact with the conductor. In this manner the infide of the jar will be fupplied with the very fame fire that left the outfide. In this cafe alfo the jar will receive as high a charge as it is capabie
many different inventions for this purpofe. That of Mr. Cauton is one of the moft fimple, and is ufeful on many occafions. It confifts of two pieces of cork, or pith of elder, nicely turned in a lathe, to about the fize of a fmall pea, and fufpended on fine linen threads, reprefented at c, Plate II. on a glafs, ftanding on a ftool. It is convenient to place them in a fmall box for the pocket; the box fhould be the full length of the ftrings, that they may lie in it without being bent *. Thefe
pable of receiving, though the rubber be infulated, and have no communication but with the outfide coating; fo that in the cafe of charging, there can be no occafion for the directions given above, when the table, the floor, or the ground are very dry. When a thin jar is difcharged, it is advifeable not to do it by placing the difcharging rod oppofite the thinneft part, as it will endanger the burfting of the jarin that part.

* If a fmooth cork ball be hung on a long ftring of filk, and ele气trified pofitively, it will always be repelled by pofitive, and attracted by negative elcctricity: but the ftrongeft repulfion will be changed into attraction at a certain diftance.

RECREATIONS.

balls not only fhow when a jar has a fufficient chatge, but alfo difcover a very fmall degree of electricity, and mark its changes from pofitive to negative, and the contrary *.

- If two pith balls, hung by linen threads, and diverging with pofitive electricity, be infulated; though in connection with conductors of confiderable length, the approach of a body electrified pofitively, will firft make them feparate, and then (if the electricity of the balls be fmall, and that of the approaching body great) it will, at a certain diftance, make them approach, and at length come into contact with it. Sometimes the divergence, previous to the convergence, is very fmall, and, without great attention, is apt to be overlooked.

If the balls have a free communication with the earth, for inftance, if they be held in the hand of a perfon ftanding on the ground, and (as in the former cafe) they be made to diverge with pofitive electricity, in confequence of being held within the influence of a body electrified negatively, the approach of pofitive electricity will make them converge; and negative electricity, diverge : the electric matter of the approaching body, in the former cafe, repelling that of the balls, and thereby, as it were, unelectrifying them; whereas, in

But the moft fenfible of all electrome. ters confifts of two or three threads of filk, as they come from the worm, to which is faftened a piece of down, that is juft fufficient to keep them perpendicular to the horizon. If infulation be neceffary, faften them to a piece of baked wood. Whenthe ends of thefe threads have received a fmall degree of electricity, they will retain it a confiderable time, and the flighteft electric force will put them in motion *. But before any experiment be made, it will be proper to obferve carefully, how long they will retain the degree of electricity that is intended to be given them, in any
the - Jatter cafe, the negative electricity of an approaching body, draws it more powerfully into the threads, and makes them diverge more. This method of judging is, therefore, excellently adapted to afcertain the kind of electricity in the atmofphere, or of a gharged jar or battery; the balls being held in the hand of a perfon ftanding on the earth or floor.
*Thefe threads will difcover a fpaller degree of electricity than can be eafily perceived by the balls.
fitua-

RECREATIONS.

fituation, and a proportionable allowance is to be made in the courfe of the experiments.

The only inftrument, however, that cant with propriety be called an electrometer; that is, fuch as meafures the precife degree to which any body is electrifred, was invented by Mr. Ftenly, and is defcribed in the Philofophicat Tranfactions, in a letter from Dr. Prieftley to Dr. Franklin, and is ae follows: A (Plate IV. Fig. 1.) is a very light rod, that turns on the center of a femicircle B, fo as always to keep pretty near its graduated limb: at the extremity of the rod is a cork ball C. D is the pillar that fupports the rod, and may be either fixed to the prime conductor, or let into the brafs knob of a jar or battery, or be fet on a ftand to fupport itfelf. The whole inftrument may be made of wood or ivory, but is found moft perfect when the' pillar: and rod, or index, are of box, made very fmooth with emery paper : the ball of cork, and
and the femicircle ivory, as the divifions on that are more legible than on wood.

The moment this inftrument begins to be electrified, the rod is repelled by the pillar, and confequently begins to move over the edge of the femicircle, and fhows, to the greateft precifion, the degree to which the prime conductor is electrified; or how high any jar or battery is charged. As the materials of which this inftrument are made are very imperfect conductors, it will very rarely diffipate any of the electricity of the prime conductor, \&c. with which it is connected : but if it be found, by a trial in the dark, that any part of it collects the electric matter, it muft be placed before, the fire to dry off the damp, particularly from the index : it fhould not, however, be much heated, for then it will not receive the electricity ready enough, and the motion of the index will not anfwer with fufficient accuracy, to the degree of electricity in the body with which it is

RECREATIONS.

in contact : but this inconvenience may be eafily remedied by moiftening the pillar and the index; for the femicircle can never be too dry.

It is evident, from the conftruction of this inftrument, that the force of different explofions may be afcertained by it, before the difcharge, with the greateft accuracy. If a jar be charged with pofitive electricity, and you want to know the precife time, while you are attempting to charge it negatively, that it becomes difcharged, watch the moment the index comes to the perpendicular ftation, which may be obferved without the leaft danger of a miftake, and you will then find there is not the leaft fpark left in the jar. If you continue the operation, the index will begin to advance again; and thereby fhow the exact quantity of the oppofite electricity the jar has acquited.

The

The electrical battery is compofed of a fiumber of coated jars, encłofed in a cale; as in Fig. 2. Plate III: Very large jars aré not the moft eligible; thofe that are fmaller contain a greater coated furface in proportion to their bulk; and it is by that the force of a battery is produced: The largeft jars that can be conveniently made are about 17 inches high, and they fhould not be more than 3 inches in diameter, and every where of an equal width.

The battery ufed and recommended by Dr. Prieftley, confifts of 64 glafs jars*, each 10 inches high, and two inches and a half diameter, and coated to within one inch and a half of the top (fee Plate III). The coated part of each is, therefore, half a fquare foot ; fo that the whole battery contains 3^{2} fquare feet. The wire of each

[^1]
RECREATIONS.

33
jar has a piece of very fmall wire twifted about the lower end of it, to touch the infide coating in feveral places, and it is put through a pretty large piece of cork, within the jar, to prevent any part of it touching the fide, which would tend to promote a fpontaneous difcharge *. Each wire is turned round, fo as to make a hole at the upper end, and through thefe holes is put a pretty thick brafs rod with knobs; one rod ferving for one row of the jars.

The communication between thefe rods is made by laying over all of them a chain, which is not drawn in the plate, left the figure fhould appear confufed. When you would ufe only a part of the battery, you lay the chain over as many rods as you want rows of jars. The bottom of

[^2]
34 RATIONAL

the box in which thefe jars ftand, is co vered with tin-foil and brafs duft; and a bent wire, touching the tin-foil; is put through the box, and appears on the outfide, as in the figure. To this wire is: faftened whatever is intended to communicate with the outfide of the battery, as the piece of fmall wire in the figure; and the difcharge is made by bringing the brafs knob to any of the knobs of the battery. The glafe of which this battery is made, is what the workmen call flint green; which. Dr. Prieftley thinke much better for this. purpofe than the beft flint, as jars made: of it are not fo apt to difcharge themfelves; and it is moreover much cheaper.

In order to judge of the ftrength of: at charge, (which in large batteries is a matter of confiderable confequence) apply the clectrometer to the wires, from time to time. A comparifon of the degree of the divergence of the balls, compared with the actual explofion, will foon enable the

RECREATIONS.

operator to tell how high his battery is charged, and confequently what will be the force of the explofion.

You are not to conclude, becaufe you can touch the wires of a large battery without any effet, that therefore, while your hand is upon them, you can fafely touch the outfide coating with the other fiand; for fometimes when the wires hare Shown no figns of a eharge, and even two days after the battery has been difeharged, tery violent thocks have been received. Therefore, foon after the firft explofiont it ${ }^{\prime}$ is proper to difcharge the tefiduum for feat of a difagreeable accident. When the box is tery dry, there will fometimes remain even the refiduum of a refiduum, for reveral days.

0 The beft conftruction of a fulmineous ronductor, that is, a machine to draw down mectricity.or lightning from the clonds, is as followe On the top of any building, (which
D 2
will

36 RATIONAL

will be more convenient if it fand on an eminence) erect a pole a (Plate IV. Fig. 2.) as tall as a man can well manage, having on its top a folid piece of glafs, or baked wood, a foot long; over which fix a tin or copper veffel b, in form of a funnel, to preferve it conftantly from the rain; above this let there rife a long fender rod c, terminating in a pointed wire, and having a fmall wire twifted round its whole length, to conduct the electricity the better to the funnel. From the funnel let a wire d, defcend along the building, at about a foot diftance from it, and be conducted through an open fafh, into the room that is moft convenient for performing the experiments. In this room let a proper conductor be infulated, and connected with the wire that comes in at the window. This wire and conductor being completely infulated, will be electrified whenever there is a confiderable quantity of electricity in the air ; and notice will be given when it is properly charged, . .
either

RECREATIONS.

either by the pith balls hung to it, or by: fuch a fet of bells as will be hereafter. defcribed.

To make experiments with this appa-: ratus in perfect fafety, the electrified wire. fhould be brought within a few inches of a conducting rod, which ferves to guard: the houfe, that the redundant electricity: may pafs off that way, without ftriking any perfon who may chance to ftand near it. The conductor to guard the houfe fhould confift of one rod, between onefourth and one-half of an inch thick, if it be of iron, but fmaller, if it be of brafs or copper, and terminating upward in a fharp point, about four or five feet above the higheft part of the building; and below, it fhould, if poffible, be continued to fome well or running water; if not, it fhould be funk feveral feet into the ground; at the diftance of fome yards from the building. It is of no confequence whether ithis conducting rod be faftened to the D_{3} infide

3 RATIONAL

infide or outfide of the hourfe, or howf many bendings there are in it,

Befide there principal parts of an electrical apparatus, the operator will frequently find it very convenient, when only fmall quantities of electricity are required, to be provided with tubes and cylinders of glafs, and fticks of wax or fulphur.

Glast tubes fhould be made as long as 2 perfon can well draw through his hand at one ftroke, that is, about three feet, of fomething more, and as wide as can be conveniently grafped, It is not neceffary that the glafs be thick; perhaps the thime ner the better, if it will bear fufficient friction, which however need be but very gentle, when the tube is in good onder. If is moft convenient to have the tube clofed at one end; for the electric matter is not only thereby beft retained on its furface, but the air may be more eafily drawn out, or condenfed in it, by means

RECREATIONS. 39

of a brafs cap fitted to the open end. A tube thus furnifhed is reprefented at a, Plate II. and is requifite for various expèriments.

The beft rubber for a fmooth glaifs tube is the rough fide of black oiled filk, efpecially when a little amalgam of mercury and any metal, is put upon it. A little bees wax drawn over the furface of a tube will alfo greatly increafe its power. In rubbing a tube, the hand fhould be kept two or three inches below the upper part of the rubber, otherwife the electricity will difcharge itfelf upon the hand, and nothing will remain upon the tube for the experiment. When the tube is in very good order, and ftrongly excited, it will throw off many pencils of rays at every ftroke, without the approach of any conductor, except what may float in the common atmofphere.

40 RATIONAL

- An electrician mould alfo be farnihed with rough glafs tubes; that is, fuch as have their , polifh taken off; though a cylinder of baked wood will do nearly as welld The beft tubber for a rough glafs tabe; or a cylinder of baked wood; as well as for a ftick of wax or fulphur, is foft new flannel ; or rather fkins, fuch as hare or cat-fkin, tanned with the hair on, being fmoother, and having a more exquifite polifh.
\therefore Such is the common conftruction of an electrical apparatus; but to make this part of our work correfpond with the reft, by adding furprife to learning and ingenuity, it will be neceffary to conceal the apparatus, by placing it in an adjoining room. For which purpofe, let the table a_{y}, b, c, d, (Plate IV. Fig. 3.) be placed againft the partition X, that feparates the two rooms. Let the branch ABC be joined at A to the prime conductor in the other room: round the part A mult be a piece of wood, baked and
and prepared ias is defrribed in the account of the apparatus; this piece mult be made to take out, that it may be heated by the fire, in damp weather, before the exhibition begins; and muft be nicely fitted to the wainfot, that it may not occafion fufpicion of any communication. The knob at C -muft be larger than ufual, that it may give the larger frap. \cdots The branch being thus joined to the prime conductor, will anfwer all the purpofes of the conductor irfelf, and larger fraps will be taken from C , than from any part near the globe.
C. In each fide of the top of the table; between a e and $b f$, muft be concealed a glafs tube that communicates with the other room, and in thefe tubes muft be placed the two chains that come from the two fides of a jar or battery, only one link of which, however, is to be feen at e and f, which may appear as hooks faftened to the table : to thefe hooks two other chains
chains or wires are to be faftened, when explofion is wanted.

2. Certain words or phrafes mult be agreed on between the operator and his affiftant, by which the latter may know when he is to charge the conductor, or connect the chains with the jar or battery. There Should likewife be a fmall hole in the partition, by which he may guide himfelf with more certainty. Under the table may be a drawer, that may be pulled out oceafionally, to thow that there is nothing conceaded.
\therefore To the foregoing apparatus it may be proper to add fome account of the tourmalin, a fubftance that has been ufed in electric experiments but a few years paft, But is fuppofed to be the lyncurium of the ancients, to which they attributed fome electric properties. This fone is comman -in feveral parts of the Eaft, and particularly

REEREATIONS. 43

Wrly in the inland of Coylon; from whots inhabitants it received its prefent nume ${ }^{\text {a }}$

The tourmalin is a foffil of a hard zad wery compact fubftance, of a deep red colour. and pellucid. Its principal properties are thus defcribed by Mr. Canton, in the Gen aleman's Magazine for September 1759a.

1. When the tourmalin is not electrical, or attractive, heating it, without friction, will make it fo; and the electricity of one fide of it (diftinguifhed by A) will be pofitive, and that of the other fide (B) will be negative.
2. The tourmalin not being electrical, will become fo by cooling; but with this difference, that the fide A will be negative, and the fide B pofitive.
3. If the tourmalin, in a non-electric

- Since the ufe of the tourmalin in electricity, if has been difcovered that fome other ftones or gems particularly the Brazil topaz, bave. fimilar properties.

44 RATIONAL:
ftate, be heated, and fuffered to cool again; without either of its fides being touched; A will be pofitive, and B negative, the whole time of the increafe and decreafe of its heat.
4. Either fide of the tourmalin will be pofitive by friction, and bath may be made fo at the fame time.

Mr. Canton obferved further, that it is not heat, but the circumftance of changing its degree of heat, that gives electricity to, this ftone.

Dr. Priefley has ingenioufly' remarked, that a pleafing deception might be made by enclofing a tourmalin, in a thin coat of fealing-wax; for the coat will then feem to have acquired the properties of the tourmalin.

We have been more minute in the defeription of this apparatus than may feem neceffary to the performing the following recre-

RECREATIONS. 45

recreations : but it is from the definitions and aphorifms, together with a defcription of the apparatus, that a knowledge of the feveral branches of fcience contained in this work, is to be acquired; the recreations being principally intended to exemplify what is there laid down. Befide, a perfon of ingenuity, in poffeffion of this electric apparatus, may invent a great number of fimilar recreations; which being the produce of his own mind, will, perhaps, be found more entertaining than any here defcribed; and at the fame time may, fome of them, tend to the further ecclairciffement of this very pleafing branch of experimental philofophy.

ELEC-

We fhall divide thefe Recreations into fuch as are performed in the light, and fuch as require a dark chamber; beginning with the former.

RECREATION 1.

The animated feather.
HLECTRIFY a fmooth glafs tube with a rubber, and hold a fmall feather (0) piece of leaf gold) at a fhort diftance from it. The feather will immediately fly to the tube, and adhere to it for a flort time, and then fly off; and the tube can never be brought clofe to the feather till it has touched the fide of the room, or fome other body that communicates with the ground. If, therefore, the operator take care to keep the tube eonftantly between the feather and the fide of the room, he may drive it round to all parts without

RECREATIONS.

touching it; and, what is very remarkable, the fame fide of the feather will be conftantly oppofite the tube.

While the feather is flying before the fmooth tube, it will be immediately attracted by an excited rough tube, or ai flick of wax, and fly continually from one tube to the other, till the electricity of both is difcharged *.

This was one of the firft ${ }_{2}$ and is one of the moft common experiments in elec' rricity; it is however very entertaining, and fhows the nature of electric attraction and repulfion altogether as well as a more claborate performance.
*This feather not badly reprefents one of that defpicable fort of women they call coquettes; who when an excited fuitor appears, readily fies to him, but prefently quits him. If another fuitor appear, the in like manner flies to him, and in like manner leaves him; and then, unlefs a third party appear, is continually changing from one, ta the other ; till at laft, they both grow tired of her, and the then remaius as infignificant and contemptible as.a mere feather.

RECRE-

48 RATIÓNAL 0

RECREATION II.

The Self-raifing pyramid.

PROVIDE a large circular bundle of threads, of different colours, and let the threads be alfo of different lengths, increafing from the circumference to the center, where they are to be longeft. Sufpend this bundle from the middle of the brafs arch between the pillars (Plate IV. Fig. 3). Then inform the company that the threads will rife up, at their command, in form of a pyramid, and continue in that form as long as they direct, and then return to their firf pofition,

Therefore, when they command the threads to rife, you give the fignal to the operator behind the partition, who, by turning the wheel, electrifies the arch, when the threads will immediately rife

RECREATIONS.

up, in form of a pyramid, and continue fo, as long as the operator continues turning the wheel, but when that ftops they will immediately return to their former pofition.

RECREATION III.

The magical dance.

FR OM the middle of the brafs arch fufpend three fmall bells, in the fame manner they are fufpended from the end of the conductor in Plate I. at l. The two outer bells hang by chains, and that in the middle by a filk fring, while a chain conneets it with the floor. Two fmall knobs of brafs, which ferve as clappers, hang, by filk Arings, one between each two bells. Therefore when the two outer bells, communicating with the conductor, are electrified, they will attract the clappers, and be ftruck by them. The clappers being thus . loaded with elecVol. III. E tricity, '
tricity, will be repelled, and fly to difcharge themfelves upon the middle bell; after which, they will be again attracted by the outer bells: and thus, by ftriking the bells alternately, the ringing may be continued as long as the operator thinks proper *.

The mufic for your dance being thus provided, you are next to fufpend a plate of metal from the fame part of the arch to which the bells are connected : at the diffance of a few inches from the arch, and exactly under it, place a metalfand of the fame fize, in the fame mannier as at v and n in Plate II. On the fland place feveral figures of men; other animals, or what you pleafe, cut in paper of leaf

[^3]
RECREATIONS.

gold, and pretty fharply pointed at both extremities *.

When the plate that hangs from the arch is electrified, the figures will dance with amazing rapidity, and the bells at the fame time ringing inceffantly, will afford no fmall entertainment to the fectators. This Recreation may be ftopped and renewed at pleafure, in the fame manner as the laft.

* If a piece of leaf gold be cut with a pretty large angle at one extremity, and a very acuie angle at the other, it will want no fland, but will hang, : by its larger angle, at a fmall difance from the conductof, and by the, continual waying motion of its lower extremities, will have the appearance of fomething animated, biting or nibbling at the condaCarr fe is therefore called by Dr. Franklin the Galden Fifh.

> E2 RECRE-

RECREATION IV.

The artificial Spider.

CUT a piece of burnt cork, about the fize of a pea, into the form of the body of a fpider; make its legs of linen' thread, and put a grain or two of lead into it, to give it more weight. Sufpend it by a fine line of filk between the electrified arch and an excited fick of wax, and it will, like a clapper between two bells, jump continually from one body to the other, moving its legs at the fame time, as if animated; to the no fmall furprize of thofe who are unacquainted with the electric influence *.

[^4]RECRE-

RECREATIONS.

RECREATION V.

The marvellous fountain.

SUSPEND a veffel of water from the middle of the brafs arch, and place in the veffel a capillary fyphon. The water will at firft iffue by drops only, from the lower leg of the fyphon; but when the wheel is put in motion, there will be one continued ftream of water, and if the electrification be ftrong, a number of ftreams will iffue, in form of a cone, the top of which will be at the extremity of the tube. This experiment may be fopped and renewed, almoft inftantly, at the word of command.

This Recreation may be diverfified by having one of thofe fountains that are made by condenfed air, as will be defcribed under the article of Hydraulics : the fountain is to be infulated, when it will pour forth one ftream only, but on being electrified, that one ftream will be divided in-

E 3
to

RATIONAL

to a thoufand, and difperfed over a large fpace of ground. You may here command either the fingle, or the divided ftream, at pleafure, by only laying your finger on the arch or taking it off. The ftreams from both thefe fountains will appear quite luminous in the dark.

RECREATION VI.

The magic picture.

HAVE a large print, fuppofe of the king, with a frame and glafs*. Cut a pannel out of the print at about two inches from the frame all round : with thin pafte, or gum water, fix the border that is cut off, on the infide of the glafs, preffing it fmooth and clofe, then fill up the vacancy, by covering the glafs well with leaf gold, or thin tin-foil, fo that it may lie clofe. Cover likewife the inner

* This experiment was invented by Mr. Kinserfley, the author of many other improvements in electricity.
edge of the bottom part of the back of the frame with the fame tin-foil, and make a communication between that and the tinfoil in the middle of the glafs; then put in the board, and that fide is finifhed. Turn up the glafs and cover the forefide with tin-foil, exaclly over that on the backfide, and when it is dry, pafte over it the pannel of the print that was cut out, obferving to bring the correfponding parts of the border and the pannel together, fo that the picture will appear as at firft, only part of it behind the glafs, and part before. Laftly, hold the print horizontally by the top, and place a little moveable gilt crawn on the king's head *.

Now if the tin-foil on both fides of the glafs be moderately clectrified, and another perfon take hold of the bottom of the frame with one hand, fo that his fingers

[^5]
R ATIONAL

touch the tin-foil, and with the other hand endeavour to take off the crown, he will receive a very fmart blow, and fail in the attempt. The operator who holds the frame by the upper end, where there is no tin-foil, feels nothing of the fhock, and can touch the face of the king without danger, which he pretends to be a teft of his loyalty. When a ring of perfons take a fhock among them, the experiment is called the confpirators.

RECREATION VIL.

The Tantalian cup.

PLACE a cup or pot, of any fort of metal, on a ftool of baked wood, or a cake of wax. Fill it to the brim with any fort of liquor: let it communicate with the branch by a fmall chain, and when it is moderately electrified, defire a perfon to tafte the liquor, without touching the cup with his hands, and he will immediately receive a fhock at his lips; which;

RECREATIONS. 57

which, however, fhould not be very ftrong.

The motion of the wheel being ftopped, you offer to tafte the liquor yourfelf, and defire the reft of the company to tafte it likewife, which they will do without any inconvenience. You then give the fignal to the operator, and while you are amufing the company with difcourfe, the cup is again charged, and you defire the fame perfon a fecond time to tafte the liquor, when, to the no fmall diverfion of the company, he will receive a fecond fhock:

RECRE-

RECREATION VIII.

The circular chimes.

LET a rmall upright fhaft of wood pafs, at right angles, through a thin round board, of about twelve inches diameter, and let the thaft turn on a harp point of iron fixed in the lower end; while a ftrong wire in the upper end, paffing through a fmall hole in a thin brafs plate, keeps the fhaft truly vertical. About 3° radii, of equal length, made of faif glafs, cut in narrow flips, are to iflue horizontally from the circumference of the board; the ends moft diftant from the center being about four inches afunder, and on the end of every one of them is fixed a brafs thimble. If a wire fixed to either of the links at F or H , while the other end of that chain communicates with the wire of a bottle electrified in the common way, be brought near the circumference of the the wheel, it will attract the neareft thimble,
ble, and fo put the wheel in motion. That thimble, in paffing by, receives a fpark, and being thereby electrified, is repelled, and fo driven forward, while a fecond thimble, being attracted, approaches the wire, receives a fpark, and is driven after the firft, and fo on, till the wheel has gone once round; when the thimbles before electrified approaching the wire, inftead of being attracted as they were at firf, they are repelled, and the motion prefently ceafes.

But if a wire communicating with the other chain, that is connected with another bottle charged through the coating, be brought near the fame wheel, it will attract the thimble repelled by the firf, and thereby double the force that carries the wheel round; and not only taking out the fire that had been communicated by the thimbles to the firf wire, but even robbing them of their natural quantity; inftead of being repelled when they come again
toward the first wire, they are more frongly attracted; fo that the wheel tineids its pace, til it goes with great rapidity, twelve on fifteen rounds in a minute, and with fuck Arength, that the weight of four ot five pounds, when laid on it, does not vifid by retard its motion*.
. This part of the machine is fometimes called an electrical jack: for if a large fowl be fitted on the upper haft, it will be carried round with a motion fit for roafting; and it appears from one of 'Dr. Franklin's letters, that it has been actually applied to this purpose. "I In the year 1748, the hat weather coming on, when electrical experiments were not fo agreeable, we put an end to them for that feafon, fays the Doctor, fomewhat humourbuffy, in a party of pleafure on the banks of the Skuylkil. Firf, fpirits were fired by a fpark feat from fine to fide through the river, without any other conductor than the water. A turkey was killed for our dinner by an electrical Chock, and roafted by the electrical jack, before a fire kindled by the electrical bottle; and the healths of all the famous electricians in England, Holland, France, and Germany, were drank in electrified bumpers, under a difcharge of guns from the electrical batteri." Franklin's Letters, p. 35.

RECREATIONS. $\quad 6$ r

Now if a radius of baked wood, of about eight inches, be fixed in the upper fhaft, and a number of fmall bells, correfponding to the notes of a tune, be placed on pillars, and fixed in two femicircular ftands, at a proper diftance from the thimbles, when the wheel turns round the radius will ftrike againft the bells, and confequently play the tune; and as the celerity of the wheels is continually altering, fo will be the time, or duration of the notes. It is to be obferved, that the two femicircles in which the bells are fixed, muft not be brought within reach of the radius till the wheel has acquired a confiderable velocity, for otherwife they will at leaft check, if not totally ftop, its motion. If the ftroke of the wooden radius do not give a tone fufficiently acute, a piece of folid glafs may be fixed to the end of it.

If a greater variety of tones is required there may be two fets of bells, one for the treble

62 R ATIONAL
treble and the other for the bafe: The bells may likewife be made to take out of the ftand, fo as to perform different tunes by being placed in different pofitions.

RECREATION IX.

The felf-moving wheel.

THIS wheel, though conftructed on the fame principles with the foregoing; appears ftill more furprifing. It is formed of a thin round plate of windowglafs, 17 inches diameter, well gilt on poth fides, all but two inches next the edge. Two fmall hemifpheres of wood are then fixed with cement to the middle of the upper and under fides, centrally oppofite, and in each of them a thick ftrong wire, eight or ten inches long, which together make the axis of the wheel. It turns horizontally, on a point at the lower end of its axis, which refts on a bit of brafs, cemented within a glafs falt-cellar. The upper end of its axis paffes through
a hole in a thin brais plate, cemented to a long and ftrong piece of glafsi which ketss it fix or eight inches diftant from any non-electric ${ }_{2}$ and has a fmall ball of wax or metal on the top, to keep in the fire.

In a circle on the table which fupports the wheel, are fixed twelve fmall pillars of glafs, at abqut eleven inches diftance, with a thimble on the top of each. On the, edge of the wheel is a fmall leaden bullet ${ }_{2}$ communicating by a wire with the gilding of the upper furface of the, wheel ; and about fix inches from it is another bullet, communicating, in like mamer, with the under furface. When the wheel is to be charged by the upper furface, a communication muft be made from the under furface to the table.

When it is well charged it begins to move. The bullet neareft to a pillarmoves towards the thimble on that pillar, and paffing

64 \quad R ATEONAL

paffing by, electrifies it, and then pufhes itfelf from it. The fucceeding bullet, which communicates with the other fur-face of the glafs, more ftrongly attracts that thimble, on account of its being electrified before by the other bullet, and thus the wheel increafes its motion, till it is regulated by the refiftance of the air. It will go half an hour, and make, one minute with another, 20 turns in a minuet, which is 600 turns in the whole. The bullet of the upper furface gives in each iurn 12 fparks to the thimbles, which makes 7200 fparks; and the bullet of the under furface receives as many from the thimbles, thofe bullets moving in the fame time 2500 feet. The thimbles are well fixed, and in fo exact a circle, that the bullets may pafs within a very fmall diftance of them.

If inftead of two bullets, you put eight, four communicating with the upper furface,
face, and four with the under furface, placed alternately, (which eight,' at 'abouit fix inches diffance, complete the circumference) the force and celerity will be greatly increafed; the wheel making 50 turns in a minute ; but then it will not continue fo long in motion.

RECREATION X.

The magician's chace.

ON the top of: a finely pointed wire; rifing; perpendicularly from the con-ductor, let another wire, fharpened at each : end, be made to move freely, as on a center. If it be well balanced, and the points be bent horizontally, in oppofite direc \rightarrow tions, it will, when electrified, turn very fwiftly round, by the re-action of theair againft the current which flows from off the points. : Thefe points may be nearly concealed, and, the figures of men and: horfes, with hounds and a hare or fox, Vol. III.
66. \quad BK TAOMAL
may be placed upon the wires, fo as to turn round with them, when they wilk look as if the one purfued the other *. If the number of wires proceeding from the fame center be increafed, and a ftill greater variety of figures be put upon them, the chace muft be more diverfified and entertaining. If the wire which fupports the figures have another wire finely pointed; rifing from its center, a fecond fet of wires, furnifhed with another fort of figures, may be made to revolve above the former, and either in the fame or the contrary direction, as the operator fhall think fit.

If fuch a wire, pointed at each end, and the ends bent in oppofite directions, be furnifhed, like a dipping needle, with a fmall axis fixed in its middle, at right an-

* This is alfo an invention of Mr. Kinmerdy, and is called by him, when the figures of horfes only are ufed, the electrical horfe-race,
gles with the bending of the points; and the fame be placed between two infulated: wire ftrings, near and parallel to each other, fo that it may turn on its axio freely upon and between then, it will, when electrified, have a progreffive as well as circalar motion, from : one and of the viires that fupport it to the other; and this even up a confiderable afcent.

RECREATION XI.

The planetarium.

FROM the branch fufpend fix concentric hoops of metal, at different diftances from each other; and under them, on a fland, place a metal plate, at the diftance of about half an inch. Then place upon the plate, within each hoop; and near to it, a round glafs bubble, blownvery light ; thefe bubbles and the diftances between the hoops fhould correfpond to. the different diameters of the planets, and
thofe of their orbits; but as that cannot: be on account of the vaft difproportion between them, it muft fuffice here to make a difference that bears fome relation to them.

Now the hoops being electrified, the bubbles placed upon the plate, near the hoops, will be immediately attracted by them; in confequence of which, that part of a bubble which touches a hoop will acquire fome electric virtue, and be repelled: the electricity not being diffufed over the whole furface of the glafs, another part of the furface will be attracted, while the former goes to difcharge its electricity upon the plate. This will produce a revolution of the bubble quite round the hoop, as long as the electrification is continued, and will be either way, juft as the bubble happens to fet out, or is driven by the operator. A ball hung over the center of all the hoops will ferve to reprefent

RECREATIONS. 69
prefent the fun, in the center, of its fyrf; tem. If the room be darkened the feveral glafs balls, will appear beautifully illuminated. .This experiment affords a remarkable inftance of electric attraction and repulfion.

RECREATION XII.

The incendiaries.

$L^{\text {E }}$E T a perfon ftand upon a ftool made of baked wood, or upon a cake of wax, and hold a chain communicating with the branch. Upon turning the wheel he will foon become electrified; his whole body, in reality, making a part of the prime conductor, and will exhibit the fame appearances; emitting fparks whereever he is touched by any perfon ftanding on the floor. If the prime conductor be very large, the fparks may be rather painful than agreeable; but if it be fmall, the electrification moderate, and none of the

$$
\mathrm{F}_{3} \text { com- }
$$

70. RATIONTI
company touch the eyes, or the more temder parts of the face, the experiment is diverting enough to all parties.

Many of the preceding experiments may alfo be performed to advantage by a perfon ftanding upon the ftool as above; and holding in his hand what was directed to be faftened to the prime conductor. If he hold a large plumy feather in his hand, it is very pleafing to obferve how it becomes turgid, its fibres extending themfelves in all directions from the rib; and how it fhrinks, like the fenfitive plants, when any unelectrified body touches it; when the point of a needle is prefented to it, or to the prime, conductor with which he is connected.

If a difh, containing fpirits of wine made warm, be brought to the electrificd perfon, and he be directed to put his, finger,

REGREATIQNS. 7I

finger, or a rod of iron into it, the fpirit will be immediately in a blaze; and if there be a wick or thread in the fpirit, that communicates with a train of gunpowder, he may be made to blow up a magazine, or fet a city on fire with a piece of cold iron ; and at the fame time know nothing of what he is about.

A recreation of this fort may be performed by feveral perfons, that all ftand upon infulated ftools, and many diverting circumftances may be added to thofe here mentioned. Care fhould be taken that the floor on which the ftools ftand be free from duft, but it is moft eligible to have a large fmooth board for that purpofe.

[^6]
7en KACTIONA自:

-nm R EGREATION XIII.,
"il:, The inconceivable jock.
PUT into a perfon's hand a wire that is fixed on to the hook that comes' from the chain which communicates with one fide of the battery, and in his other hand put a wire with a hook at the end of $\cdot \mathrm{it}$, which you direct him to fix on to the hook that comes from the other chain, which when he attempts he will inftantly receive a fhock through his body, without being able to guefs from whence it proceeds. The fhock will be in proportion to the number of jars that are charged; but it is remarkable, that a fmall hock gives a much more pungent fenfation in paffing through the body, than one that is large *.

[^7]This

This recreation may be diverfified, and rendered fill more entertaining, by concealing the chain that communicates with. that which comes from the outfide of the battery, under a carpet, and placing the wire that communicates with the chain which comes from the infide, in fuch manner that a perfon fhall put his hand upon it without fufpicion, at the fame time that his feet are upon the other wire. . Many, other methods of giving a lhock by furprize may be eafily contrived; but, great care fhould be taken that thefe fhocks, be not too ftrong, and that they be not given to all perfons indiferiminately.

When a fingle perfon receives a fhock, the company is diverted at his fole expence; but all contribute their fhare to the entertainment, and all partake of it alike, when the whole company forms 2 circle, by joining their hands, and when the operator directs the perfon who is at one extremity of the circle, to hold the chain

74 RATIONA)L

chain which: communicates with the coat ing; while he who is at theother extremity of the eircle touches the other chain or wire. All the perfons who form this circuit being ftruck at the fame time, and with the fame degree of force, it is often very pleafant to fee them all flart at the fame moment, to hear them compare their fenfations, and obferve the very different accounts they give *.

This experiment may be agreeably varied, if the operator, inftead of making the company join hands, direct them to tread on each other's toes, or lay their hands on each other's heads. If in the latter cafe the whole company fhould be fruck to the ground, as it once happen-

[^8]ed when Dr. Franklin gave the fhock to fix wery fout men, the inconvenience arifing from : it will be very little: ' , the company that was ftruck in this manber neither heard nor felt the froke; and immediately got up again; without knowing what had happened. This froke was given with two large jars, each of thie meafure of about fix gallons, but not fully charged.

RECREATION XIV.

Magical explofions.

WE have hown in a preceding recreation how gunpowder may be fired by the intervention of fpirits, but there is another method, more fimple and expeditious, which we fhall here defcribe. Make up gunpowder in the form of a frall cartridge, in each end of which put a blunt wire, fo that the ends within the cartridge may be about half an inch diftant
from
${ }^{5}$ \therefore R $A_{i} \mathrm{~T}_{\mathrm{H}} \mathrm{O}_{1} \mathrm{NA} \mathrm{A}_{\boldsymbol{A}}$
frgm each other, then, joining the chain that comesp from: one fide of the battery to one of the wires at the end of the car-tridge, bring the chain that comes from the other fide of the battery, to the wire at the other end, when the thock will inftautly pafs through the powder, and fet at on fire.

Bya fimilar method fine brafs or irom wire may be melted; for the explofion will pafs from one chain to the other, through the wire, which will be firft red hot, and then melt into round drops ${ }^{*}$. A battery of 35 jars has entirely deftroyed fine brafs wire, of the 33 cth part of an inch in diameter, fo that no particle of it could be found after the explotion. At the moment of the ftroke, a great number of

* The power of a battery to melt wire is different at different diftances. Dr. Prieftley found that he could melt nine inches of fmall iron wire at the diftance of 15 yards, but at 20 yards diftance the could only make fix inches red hot.

RECREATIONS.

Pparks, like thofe from a flint and ftel, Hew upward and faterally from the' place where the wire was laid, and lont their light, in the day, at the diftance of about two or three inches*.
?
A froke from a common jar will eafily frike a hole through a thick cover of:a book, or many folds of paper, leaving a remarkable bur or prominence on both fides, as if the fire had darted both ways from the center.

* The late Mr. Cauton, by whofe ingenuity and indultry this branch of philofophy received very great improvement, clearly proved, that pure gold and filver might be calcined by the electric explofion, and be converted into numberlefs globules of glafs, fome of which were tranfparent, and others tinged with a great variety of colours.

RECRE-

28 RUATIONANL

$\therefore: 9$
\because RECREATEQN XV.

> The prifmatic colours*.
$T \mathrm{O}$ the ends of each of the chains that ${ }^{i}$ come from the battery, fix an iron wire, and between thofe wires place a plate of tin, of about three inches fquare, and polified on one fide t, in a perpendicular direction. The wire next the polifhed ${ }^{\text {d }}$ fide thould be finely pointed, and brought very near the furface of the plate.

By repeating the explofions of the battery, there will firf appear a dufky red,

* This difcovery was made by Dr. Prieftley, and ferves to confirm the Newtonian doctrine of the difference of colours in bodies arifing from the different denfities of the fine plates that compofe their furfaces.
\dagger The polifh is not neceffary, but the colours appear more beautiful than on a rough furface. This experiment may be made equally well with the other metals, as gold, filver, copper, brafs, iron, or lead.
about the edge of the central fpot; prefently after, generally after four, or five ftrokes, there appears a circular fpace, vifible only in an oblique pofition to the light, and looking like a fhade on the plate: this expands very little during the whole courfe of the explofions. , After a: few more difcharges, the fecond circur, lar fpace is marked, by another fhade beyond the firt, of one-eighth or onetenth of an inch in width; which neves changes its appearance after any number of explofions. All the colours make their firft appearance about the edge of the circular fpot; more explofions make them expand toward the extremity of the fpace firf marked out; while others fucceed in their place, till after 30 or 40 explofions, three diftinct rings appear, each confifting of all the colours in the prifm or rainbow.

It makes no difference whether the electricity iffue from the pointed wire
$80 \quad$ RATIONAL
upan the plate, or from the plate upon the pointed wire, the furface oppofite the point being marked exactly the fame in both cafes. The points themfelves, from which the fire iffues, or at which it enters, are coloured for about half an inch to a confiderable degree, and the colours are repeated, as on the plate.

The innermoft, that is, the laft formed colours; on the plate, are always the moft vivid, and thofe rings are alfo clofer to each other than the reft. Thefe colours may be brufhed with a feather or the finger, without injury, but they are eafily peeled off by the nail, or any thing that is fharp.

RECREATIONS. 8i,

RECREATION XVI.

The artificial earthquake.

IN the middle of a large bafon of water place a round wet board: this board reprefents the earth, and the water the fea. On the board erect an edifice, compofed of feveral feparate pieces, which may reprefent a church, a caftle, a palace, or if you pleafe all of them.

Then placing a wire that communicates with the two chains of the battery, fo that it may pafs over the board and the furface of the water, upon making the explofion the water will become agitated, as in an earthquake, and the board moving up and down, will overturn the ftructures it fupports; at the fame time that the caufe of this commotion is totally concealed.

This

This experiment likewife was invented: by Dr. Prieftley, and, when well executed, cannot fail to give great furprize as welk as entertainment.

RECREATION XVII.

The electrical kite *.

TAK K a large thin filk handkerchief and extend it, by faftening the four corners to two llight ftrips of cedar. The handkerchief thus prepared and accommodated with a tail, loop, and ftring, wilk rife in the air as a common paper kite. To the top of the upright ftick of the crofs is to be fixed a pretty fharp-pointed wire, rifing a foot or more above the wood. To the end of the twine next the hand is' to be tied a filk ribband, and where the twine and filk join, a key or tin tube may be faftened.
$\therefore::$ * This is an invention of Dr Franklin.
This

RECREATIONS.

This kite is to be raifed when a thunder guft appears to be coming on, and as foon as the thunder clouds come over the kite, the pointed wire will draw the electricity from them, and the kite, with all the twine, will be electrified, the lofe filaments of the twine will ftand out every way, and be attracted by the finger. When the rain has wetted the kite and twine, fo that it cannot conduct the electric fire freely, it will ftream out plentifully from the key, on the approach of a man's knuckle. At this key a phial may be charged, and from the electric fire thus obtained, fpirits may be kindled, and all the other experiments performied'.

The greateft quantity of electricity that was ever brought from the clouds by an apparatus, was by M. de Romas, of Nerac, in the fouth of France. This gentleman was the firft who made ufe of a wire interwoven in the hempen cord of an electric kite, which was feven feet and a half high, G 2 and Dogried by Google

8+ \quad R A!TIONAL

and three feet wide, fo that it contained 18 fquare feet of furface. This cord was found to conduct the electricity of the clouds more powerfully than a hempen cord, even though it was wetted; and being terminated by a cord of dry filk, it enabled the obferver (by a proper management of his apparatus) to make whatever experiments he thought proper, without danger.

By the help of this kite, on the 7th of June, 1753 , about one in the afternoon, when it was raifed 550 feet from the ground, and had taken 780 feet of fring, making an angle of near 45 degrees with the horizon, he drew fiparks from his conductor three inches long, and a quarter of an inch thick, the friapping of which was heard 200 paces. While he was taking thefe fparks, he felt, as it were, a fort of cobweb on his face, though he was more than three feet from the ftring of the

* That is, being the half way between the horizon and the point directly over the fpectator's head.
kite :

RECREATIONS. $\quad 85$

Kite : after which he did not think it fafe to fand fo near, and called aloud to all the company to retire, as he did himfelf about two feet.

Thinking himfelf now fecure enough, and not being incommoded by any body very near him, he took notice of what paffed among the clouds that were immediately over the kite. There was no appearance of lightning there, or any where elfe, nor fcarce the leaft noife of thunder, and no rain at all. There was a pretty ftrong wind at weft, which raifed the kite at leaft 100 feet higher than in any other experiment. Cafting his eyes afterwards on the tin tube faftened to the ftring of the kite; and about three feet from the ground,' he faw three ftraws, one of which was about a foot long, a fecond four or five inches, and the third three or four inches, all ftanding erect, and performing a circular dance, like puppets, under the tin tube, without touching each other.

$$
G_{3} \quad \text { This }
$$

This little fpectacle, with which feveral of the company were much delighted, lafted about a quarter of an hour; after: which fome drops of rain falling, he again perceived the fenfation of the cobweb on his face, and at the fame time heard a continual ruftling noife, like that of a fmall forge bellows. This was a further warning of the increafe of electricity, and from the firft inftant Mr. De Romas perceived the dancing ftraws, he thought it not advifeable to take any more fparks, even with all his precautions; and he again intreated the company to retire to a ftill greater diftance.

Immediately after this came on the laft act of the entertainment, which M. De Romas acknowledges made him tremble. The longeft ftraw was attracted by the tin tube, upon which there followed three explofions, the found of which greatly refembled that of thunder. Some of the company compared it to the explofion of . rockets,

RECREATIONS.

rockets, and others to the violent erafhing of large earthen jars againft a pavement. It is certain that it was heard into the 'heart of the city, notwithitanding the various roifes there.

The fire that was feen at the inftant of explofion had the fhape of a fpindle, eight inches long, and five lines in diameter. But the moft aftonifhing and diverting circumftance was produced by the fraw, which had occafioned the explofion, following the fring of the kite. Some of the company faw it at 45 or 50 fathoms diftance, attracted and repelled alternately, with this remarkable circumftance, that every time it was attracted by the flring, flaihes of fire were feen, and cracks were heard, though not fo loud as at the time of the former explofion.

It is remarkable, that from the time of the explofion, to the end of the experiment, no lightning at all wasfeen, and farce
G_{4} any Dogried by Google

88

 RATITON:AL:any thunder heard. A finell of fulphur was perceived, much like that of the luminous electric effluvia iffuing from the end of an electrified bar of metal. Round the ftring. appeared a luminous cylinder of light, threeor four inches in diameter; and as this was in the day time, M. de Romas did not queftion but that if it had been in the night, the electric atmofphere would have appeared to be four or five feet in diameter, An end was put to thefe remarkable experiments, by the wind's fhifting to the eaft, and rain, mixed with hail, coming on in great plenty *.

* The quantity of electric matter brought by this kite from the clouds at another time is really aftonifhing. Auguft 26, 1756, the ftreams of fire iffuing from it were obferved to be an inch thick, and ten, feet long. Thefe amazing flafhes of lightning, whofe report was equal to that of a piftol, and whofe effect, had any of them ftruck on buildings, or animal bodies, would perhaps have been equally deftructive with any mentioned in hiftory, were fafely conducted by the cord of the kité, to a non-electric body placed near it,

RECREATIONS.

As the foregsing account might deter fome perfons from attempting this very entertaining experiment, efpecially when there is the appearance of an approaching thunder-ftorm, we fhall here add an apparatus, invented by Dr. Prieftley, and with which he thinks there can be no great danger in any thunder-ftorm.

Let the ftring A, of a kite (Plate IV. Fig. 4.) be wound upon a reel B, going through a llit in a flat board, faftened at the top of it; by which more or lefs of the ftring may be let out at pleafure. Let the reel be fixed to the top of a tin or copper funnel C, and from the funnel let a metal $\operatorname{rod} \mathrm{D}$, with a large knob, be projected, to ferve as a conductor. This funnel and reel muft be fupported by a ftaff \mathbf{E}, the upper end of which, at leaft, muft be well baked, and the lower end may be made fharp, to thruft into the ground, when the kite is well raifed.

The fafety of this apparatus depends on the chain F , faftened to the ftaff by a hook a little below the funnel, and dragging on the ground : for the redundant lightning will ftrike from the funnel to the chain, and fo be conducted as far as is defired, without touching the perfon who holds the ftaff.

Sparks may be taken from the conductor of this apparatus, with all fafety, by means of a fmall rod of baked wood A_{0} Fig. 4. furnifhed with a fmall funnel B, a brafs rod C , and a chain connected with it; for the lightning which ftrikes the rod, will pafs by the funnel and the chain, without touching the perfon who holds the rod.

RECRE-

Plate IV.
(9.

RECREATIONS 91

recreations in the dark chamber.

To exhibit a great number of pleafing and furprifing recreations in the dark, as well as in the light, is the peculiar property of electricity: for though there are many beautiful experiments performed in the camera obfcura, it is fill by the aid of the fun's rays, or thofe of a candle or lamp: wherèas the electric apparatus contains within itfelf thofe particles of fire by which thefe recreations are performed.

RECREATION XVIII.

The miraculous luminaries.

TO perform this recreation it is neceffary to be provided with a quantity of the following phofphorus. Calcine common oyfter-fhells, by burning them in the fire for about half an hour; then beat them into powder, of the cleareft of
g2 KATIONAL
of which take three parts, and of flowers of fulphur one part, and put the mixture into a crucible about one inch and a half deep. Let it burn in a ftrong open fire, for a full hour; when cool turn it out, and break it into feveral pieces, and taking thofe pieces into a dark place, frrape off the brighteft parts for ufe, which, when good, will be a white powder.

Then take a circular board of three or four feet diameter, on the center of which draw the figure of the half moon, of three or four inches diameter, and round it, at different diftances, draw a number of fars, of different magnitudes. On each of thefe figures fix the phofphorus juft mentioned, to the thicknefs of about a quarter of an inch. The board being thus prepared, you muft have ready a number of charged jars, or phials, and by difcharging one of them, at the diftance of about an inch, over each figure, it will become illuminated. The light of the crefcent will be fo ftrong
at firft, that you may diftinguifh by it the figures on the dial of a watch, Round the board let there be placed a rim or hoop x^{\prime} and over that, at a fufficient diftance from the figures, draw a curtain.

The board thus prepared is to be brought into the darkened room, and placed, by hooks, againft the ceiling. The curtain is then to be drawn back, and the moon and ftars will appear as emerging from behind a cloud, and will continue to thine for half an hour ; the light, however, growing continually more faint.

Previous to the performing the following recreation, it will be neceffary to have a globe and culhion placed on the middle of the table, which muft communicate, by a ftring that goes through the partition, .with the wheel in the other room.

RECRE-

94 RATIONAL

RECREATION XIX.

The globular fires.

1 ET the room, and all the parts of the apparatus, be made very dry, and let the globe be ftrongly exeited, fo that the electricity may be very vigorous; the fire will then be feen to dart from the culhion toward the wire of the conductor. Sometimes thefe lucid rays (which are in part vifible in day-light) will make the circuit of half the globe, and reach the wires ; and they will frequently come in a confiderable number, at the fame time, from different parts of the culhion, and reach within an inch or two of the wires. The noife attending this beautiful phenomenon exactly refembles the crackling of bay leaves in the fire. Thefe lucid arches have frequently radiant points, often four or five in different parts of the fame arch. Thefe radiant points are intenfely bright,

RECREATIONS.

and appear very beautiful. It is peculiarly pleafing to obferve the circles of fire rife from thofe parts of the cufhion, where the amalgam or moifure has been put, or which have been lately fcraped. Single points on the rubber will then appear intenfely bright, and for a long time together will feem to pour out continual torrents of flame. If one part of the rubber be preffed ctofer than another, the circles will iffue from that part more frequently than from any other.

When the conductor is taken quite away, circles of fire will appear on both fides the rubber, which will fometimes meet, and completely encircle the globe. If in that flate a finger be brought within half an inch of the globe, it is fure to be fruck very fmartly; and there will often be a complete arch of fire from it to the subber, though it be almof quite round the globe.

If all the air be exhaufted from the globe, the elearicity will be found to act wholly within it, where it will appear in the form of a cloud or flame of reddifh or purple-coloured light, filling the whole interior fpace of the globe *.

RECREATION XX.

The luminous 乃bower.

O^{N}N the plate at n, Plate II. put a number of feeds of any kind; or grains of fand, or a quantity of brafs duft. The conductor being ftrongly electrified, thofe light particles will be attracted and repelled by the plate 0 , fufpended from the conductor, with amazing rapidity, fo as to exhibit a perfect luminous fhower.

* When this recreation is finifhed the globe and rubber muft be taken away, that they may not incommode the apparatus of the following experiments.

Another

RECREATIONS.

Another method of reprefenting luminous rain, is by a fpunge that has been immerfed in water. When this fpunge is firft hung to the conductor, the water will drop from it very flowly; but when it is electrified, the drops will fall very faft, and will appear like globules of fire, illuminating the bafon into which they fall.

RECREATION XXI.

The illuminated vacuum.

TA'KE a tall receiver that is very dry, and through the top of it fix, with cement, a wire, not very acutely pointed. Then exhault the receiver, and prefent the knob of the wire to the conductor, and every fpark will pafs through the vacuum, in a broad ftream of light, vifible through the whole length of the receiver, how tall foever it be. This fream often divides itfelf into a variety of beautiful rivulets; which are continually changing their Vol. III. H courfe,

98

 RATIONALcourfe, uniting and dividing again in a moft pleafing manner. If a jar be difcharged through this vacuum, it gives the appearance of a very denfe body of fire, darting directly through the center of the vacuum, withont ever touching the fides: whereas, when a fingle fpark paffes through, it generally goes more or lefs to the fide, and a finger put to the outfide of the glafs, will draw it wherever a perfon pleafe. If the veffel be grafped by both hands, every fpark is felt, like the pulfation of a large artery, and all the fire. makes towards the hands. This pulfation is felt at fome diftance from the receiver, and a light is feen between the hands and the glafs.

All this while the pointed wire is fuppofed to be electrified pofitively; if it be electrified negatively, the appearance is remarkably different. Inftead of ftreams of fire, nothing is feen but one uniform luminous appearance, like a white cloud, or
the milky way in a clear ftar-light night. It feldom reaches the whole length of the veffel, but generally appears only at the end of the wire, like a lucid ball.

If in the neck of a tall receiver a fmall phial be inferted, fo that the external furface of the glafs may be expofed to the vacuum, it will produce a very beautiful appearance. The phial muft be coated on the infide, and while it is charging, at every fpark taken from the conductor into the infide, a flaih of light is feen to dart, at the fame time, from every part of the external furface of the phial, fo as to quite fill the receiver. Upon making the difcharge, the light is feen to return in a much clofer body, the whole coming out at oṇce.
$\mathrm{H}_{2} \quad \mathrm{RE}$ -

RATIONAL

RECREATION XXII.
 The luminous cylinder *.

PROVIDE a glafs cylinder three feet long and three inches diameter : near the bottom of it fix a brafs plate, and have another brafs plate fo contrived that you may let it down the cylinder, and bring it as near the firft plate as you delire. Let this cylinder be exhaufted and infulated, and when the upper part is electrified, the electric matter will pafs from one plate to the other, when they are at the greateft diftance from each other the cylinder will admit. The brafs plate at the bottom of the cylinder will moreover be as frongly electrified, as if it was connected by a wire with the prime conductor.

The electric matter in its paffage thro' this vacuum is faid to produce a delightful
*This is an invention of Dr. Wation. fpec-

RECREATIONS. Ior

fpectacle ; not making, as in the open air, fmall brufhes or pencils of rays, an inch or two in length, but corufcations of the whole length of the tube, and of a bright filver hue. Thefe do not immediately diverge, as in the open air, but frequently form a bafe that is apparently flat, dividing themfelves into lefs and lefs ramifications, and very much refemble the moft lively corufcations of the aurora borealis.

RECREATION XXIII.

The magical confellations.

$A^{s}$$S$ the moon and ftars in the zenith will become dull during the time of per-forming the preceding recreations, it will be proper to draw the curtain gently before them, that it may feem as if a cloud came flowly over them; and then the operator may, by his magical power, light up other conftellations. In order to which,
H_{3} he
1022. RATIONAL
he muft provide a large board, on which let him mark the ftars that are in two or more conftellations, which are configuous and vifible in the northern hemifphere, as Taurus, Gemini, \&e.

To reprefent thefe ftars, let there be a hole on cach fide of the fpot that is marked for a ftar, at about a quarter of an inch diftant from each other, and let the extremities of two wires, neatly rounded, come through thefe holes, and be brought near together, exactly over the mark.

- Thefe wires fhould be of different fizes, that they may the better reprefent the different magnitudes of the ftars.

The other ends of the wires muft be fo difpofed, that they may all receive a fpark from the conductor at the fame time, and the ftars will then be all luminous at the fame inftant. Thefe ftars are not evanefcent, like thofe made by the phofphorus, but will continue with

RECREATIONS. 103

equal fplendor as long as the motion of the wheel is continued. After the fame manner any cypher, or the outlines of a drawing may be exhibited.

RECREATION XXIV.

The luminous characters*.

PROVIDE a board about four inches wide, as A B, (Plate III. Fig. I.) and of what length you pleafe. On this board place ten or twelve rows of tin-foil, at about half an inch diftance from each other, and that all communicate together. From thefe lines are to be cut out the characters you intend to reprefent; obferving that the ends of the tin-foil where it is cut, fhould not be ftrait, but pointed as in the figure.

At the beginning of the tin-foil there muft be a brafs knob C, which being brought
*This is an invention of Mr. Henly, the author of the graduated electrometer defaribed in the appatatus.

104 RATIONAL

to the conductor, receives the electricity and conveys it to the tin-foil, over which it would run imperceptibly, were there no breaks in the lines, but being there interrupted, it jumps from one point to the other, making at the fame time a lucid fpot, by which the characters are formed, and will continue as long as the wheel is in motion. If at the fame time the knob is applied to the conductor, the operator place his finger againft the other end of the uppermof line of the tin-foil, and draw it lowly down, over the ends of the other lines, it will feem as if the characters were formed by the motion of his hand.

> This experiment may be made by the difcharge of a jar or phial, but it will then be of a chort continuance. By this method alfo the conftellations, or the outlines of a drawing, \&c. may be reprefented.

RECREATIONS. 105

RECREATION XXV.

Prifmatic illuminations*.

TAKE a glafs veffel about a foot long and eight inches diameter, open at bothends; and let one of its ends be clofed by a brafs ferule, which is to conftitute one of the centers on which it is to turn: the other end muft be clofed with a metal plate. In the center of the plate let there be a fquare ftem, which is to be applied to the arbor of a lathe, by which the globe is to be turned round. On one fide of this laft plate muft be fixed a cork, by means of which the glafs is fcrewed upon the air-pump.

Upon rarefying the air within the glafs about 500 times, and afterwards turning

* This experiment was firft made by Mr. Smeaton, the inventor of the new air-pump.

106 RATIONAL

the glafs in the lathe, and rubbing it at the fame time with the hand, a confiderable quantity of lambent flame, variegated with all the colours of the rainbow, will appear within the glafs, under the hand. This light is perpetually changing colour under the hand, but in every other refpect is pretty fteady.

When a little air is let into the glafs, the light appears more vivid, and in greater quantity, but is not fo fteady, for it will frequently break out into a kind of corufcation, likelightning, and fly allover the interior part of the glafs. When a little more air is let in, the flafhing is continual, and ftreams of bluifh light feem to iffue from under the hand, within the glafs, in a thoufand forms, with great rapidity, and appear like a cafcade of fire. Sometimes it is feen to fhoot out into the form of trees, mofs, \&cc.

RECREATIONS.

When more air is let in, the quantity of light is diminifhed, and the ftreams that compofe the flarhes narrower. The glafs now requires greater velocity, and harder friction. Thefe circumftances will increafe as ftill more air is let in, fo that by the time the glafs is one-third full of air, the corufcations quite vanifh, and a much fmaller quantity of light appears, partly within and partly without the glafs. When all the air is let in, the light appears wholly without the glafs, and much lefs in quantity than when the glafs is ouly in part exhaufted.

108

 RATIONAL
REGREATION XXVI.

The aurora borealis*.

MAKE aTorricellian vacuum in a glafs tube, about three feet long, and feal it hermetically \dagger : it will then be always ready for ufe.' Let one end of this tube be held in the hand, and the other applied to the conductor, and immediately the whole tube will be illuminated, from end to end; and when taken from the conductor will continue luminous; without interruption, for a confiderable time, very often above a quarter of

- This is one of the inventions of that great benefactor to this fcience, Mr. Canton.
\dagger The Torricellian vacuum is made by filling a tube with pure mercury, and then inverting it, in the fame manner as in making a barometer; for as the mercury runs out, all the fpace above will be a true vacuum. A glafs is hermetically fealed by holding the end of it in the flame of a candle till it is ready to melt, and then twifting it together with 2 pair of pincers.
$2 I$

RECREATIONS. 109

an hour. If after this, it be drawn thro' the hand either way, the light will be uncommonly intenfe, and, without the leaft interruption, from one hand to the other, even to its whole length. After this operation, which difcharges it in a great meafure, it will ftill flafh at intervals, though it be held only at one extremity, and quite Itill ; but if it be grafped by the other hand at the fame time, in a different place, ftrong flafhes of light will hardly ever fail to dart from one end to the other; and this will continue 24 hours, and perhaps much longer ; without frefh excitation. Small and long glafs tubes exhaufted of air, and bent in many irregular crooks and angles, will, when properly electrified, beautifully reprefent flafhes of lightning.

RECRE-

RECREATION XXVII.

 The circulating lamps.AFTER keeping the company thus long in the dark, it will be proper to illuminate the room before you difmifs them. In order to which, introduce the circulating wheel, mentioned in the gth Recreation. To the upper axis of which let there be fixed a number of radii, made of baked wood, at the end of each of which muft hang a fmall globular lamp, filled with fpirits; and let that of each lamp be tinged with a different colour. The wheel, having previoufly acquired its greateft velocity, is to be placed on the table, and a chain, depending from the branch, is to dip into each lamp as it paffes by ; fo that all of them will become illuminated in a very fhort time, Thefe lamps will not only enlighten the room, but by their variegated colours, and continual revolution, afford a very pleafing phenomenon.

MAGNETISM.

$\left[\begin{array}{ll}113\end{array}\right]$

MAGNETISM.

DEFINITIONS.

1. MAGNETISM is the fcience that explains the feveral properties of the attractive and repellent powers in the magnet or loadftone.
2. The magnet is a rich, heavy, iron ore, of a hard fubftance, a dufky grey colour, with fome mixture of . a réddifh brown, and fparkling when broke.
3. The magnetic virtue is called the third fpecies of attraction ; gravity being the firft, and electricity the fecond.
4. The two ends of a magnet, when it is properly formed, are called its poles; and when it is placed on a pivot, in juft equilibrium, one end will turn toward the north, and is called its north pole, and the other end the fouth pole *.
[^9]
114

 R.ATIONAL5. When the two poles of a magnet are furrounded with plates of fteel, it is faid to be armed.
6. If the end of a fmall iron bar be rubbed againft one of the poles of a magnet, it is faid to be touched, and is then called an artificial magnet.
7. If fuch a magnet be fupported on a pivot, it is called a magnetic needle; one end of it turning toward the north, and The other toward the fouth.
8. The difference between the pofition of the needle, and the exact points of north

* and fouth, is called its declination.
1.0.9.That end of the needle which is touched will incline toward the earth, and that is called its inclination or dipping.
voles are the needle, wiil frand upright, but nowhere elfe. The exterior parts are then to be filed or ground off, and the two extremities which cantain the poles, to be made quite fmooth.

APHQ-

$$
A \quad P \quad H \quad O \quad R \quad \mathbf{I} M \mathbf{M}
$$

1. The magnetic attraction is produced by effluvia emitted by the magnet, and paffing from one pole to the other *.
2. One pole of a magnet will attract iron, and the other repel it, but no other body \dagger.

* The direction of the magnetic effluvia is thown by the following experiment. Let $A B, C D$, (Plate V. Fig. 1.) be the poles of a magnet. Round every fide lightly ftrew fteel filings, on a heet of white paper; the particles of thie filings will be fo effected by the effluvia of the ftone, as to fhow the courfe they take every way. In the middle of each pole, between A B and C D, they appear to proceed in lines nearly ftraight; toward the ends they are more and more curved, till at laft the lines from both fides, coinciding with each other, form numberlefs curves round the ftone, which are nearly of a circular figure, as in the plate. This experiment feems to fhow that the magnetic effluvia, iffuing from one pole, circulates to the other.
+ The property of the magnet to attract iron has been known many ages : but thofe of its polar direction, and of its communicating that property to iron, was not difcovered till the 14th century.

$$
\text { I } 2 \text { 3. The }
$$

116 R A TIONAL

3. The magnet attracts iron as well ins vacuo, as in the air.
4. The magnetic attraction will be continued through feveral pieces of iron placed contiguous to each other.
5. The magnetic effluvia pervades all bodies.
6. The magnetic attraction extends toa confiderable diftance *.
7. The north pole of one magnet will attract the fouth pole of another : and the fimilar poles will repel each other \dagger.

* The learned Mufchenbroek made a number of experiments, with great care and affiduity, to determine the extent and progrefs of the magnetic attraction, but was never able to difcover any regular proportion between the force and diftance; but merely that the force increafed as the iron approached the magnet. Nor does there feem to be any profpect of eftablifhing the proportion of attraction to the diftance, till a method is found, if. it can be found, of feparating the attracting from the repelling parts. A needle has been known to. be attracted by an iron bar at the diftance of eight or ten feet.
\dagger If a magnet be gently cut through the middle of its axis, each piece becomes a complete magnet ; for

8. The end of a needle touched by the north pole of a magnet will turn fouth, and that touched by the fouth pole will turn north.
9. The declination of the magnetic needle is different in different parts of the earth, and in the fame part at different times *.
10. The inclination of the needle is not
for the parts that were contiguous become poles, aad even oppofite poles. So that the end of each piece may become a north or fouth pole according as the fection is made neareft to the north or fouth pole of the large magnet. Upon cutting a magnet longitudinally, there will be four poles, in the fame pofition as before the cutting. Sometimes a ftrong ftroke with a hammer will bring all the magnetic power from one end of a needle to the other $;$ fometimes make it more frong where it was before, and at other times totally defroy it.

* The declination of the needle at London, in the year 1580 , was 11 degrees, 15 minutes eaft. In the year 1657 , there was no declination, that is, the needle ftood exactly north and fouth. At prefent, the declination is more than 20 degrees weftward,

118 RATIONAL
always the fame in different places, nor in the fame place at different times *.
II. The ftrength of natural magnets differs in thofe of different magnitudes, but not in proportion to their magnitudes \dagger.

* The inclination of the needle when it was firft obferved, in the year 3576 , was found to be 71 degrees 50 minutes : at prefent it is between 74 and 75 degrees.

To prevent the dipping of the needle in the common compafs, the end that is not tounched is made fomething heavier, by which it is kept in equilibrium. Under the equator the needle has no inclination, being equally attracted by the two poles of the earth.

+ The fmalleft magnets have generally the greateft power, in proportion to their bulk. A large magnet will feldom take up more than three or four times its own weight; whereas a fmall one will frequently take up more than ten times its weight. A magnet that weighs fcarce three grains, and that a gentleman wears in his ring, will take up 746 grains, or 250 times its own weight. A magnetic bar made by Mr. Canton, according to the method we fhall hereafter defcribe, and that weighed 10 ounces 12 pennyweights, took up fomething more than 79 ounces; and a flat femicircular

RECREATIONS.

12. The ftrength of a natural magnet ; is confiderably increafed, by its being : armed *.
circular fteel magnet that weighed an ounce and 13 pennyweights, lifted an iron wedge of go ounces.

* There are various ways of arming magnets; the moft eligible feems to be that of placing two pieces of fteel againft the two poles, fo that they may come down below the bottom of the fone, and binding them on with one or more pieces of brafs; the two ends of the fteel pieces then become the poles of the magnet. To determine the quantity of fteel to be applied, try the magnet with feveral fteel bars, and the greateft weight it takes up, with a bar on, is to be the weight of its armour.

Though an armed magnet have a great degree of force, it may be eafily counteracted. If an oblong piece of iron be fufpended by one of its polés, and the pole of a different denomination of a weaker and unarmed magnet be placed under the jron, it will quit the firft magnet, and adhere to the other. In like manner when a needle hangs by its point to a magnet, if a common bar of iron be applied to the bead of the needle, it will directly quit the magnet and adhere to the bar, but if it hang by, its head to the magnet, neither the iron, nor a weak magnet, will difengage it. "Tho"
13. Iron acquires a magnetic power by being continually rubbed in the fame direction*.
14. Iron bars become magnetic by fanding a long time nearly upright \dagger :
the pole of an armed magnet have great power, yet if an iron bar of great length be placed under it, the magnet will not appear to have any force whatever.

If a magnet, by lyinig a long time unufed, have loft part of its power, it may fometimes be recovered. An armed magnet that weighed 14 ounces, and a half, and would take up 16 times its own weight, by laying by fome years loft one-fourth part of its power. But as much weight being applied to it, as it would then take up, and being fuffered to hang to it fome weeks, it would then take up an additional quantity ; and the quantity being continually increafed, at different periods, for the fpace of two years, it would then take up. more than 20 pounds; whereas, before its virtue was impaired, it would not take up 15.
*From hence files, augurs, and fuch like tools, have always fome magnetic power.
t Therefore pokers, tongs, and other irons, that always ftand with the fame end downward, are conftantly magnetic. Some bars acquire fe-

RECREATIONS.

15. The magnetic virtue may be communicated by elec̣tricity *.
16. A ftrong blow at the end of a thort iron bar will give it a magnetic power \dagger.
17. Fire totally deftroys the power of magnets, as well natural as artificial.
yeral magnetic poles, alternately north and fouth.

* When the electric fhock is very ftrong it will give 2 polarity to needles; ; and fometimes it will reverfe their poles.
+ If fuch a bar, or a pair of pincers, be ftruck bard, or thrown forcibly aganift a ftone floor, they will manifeftly attract a fmall needle that floats upon the furface of the water in a glafs.

METHOD

122 RATIONAL

METHOD OF MAKING ARTIFICIAL MAGNETS*.

PROCURE a dozen bars; fix of foft fteel, each three inches long, one quarter of an inch broad, and one-twentieth of an inch thick, with two pieces of iron, each half the length of one of the bars, but of the fame breadth and thicknefs; and fix of hard fteel, each five inches and a half long, half an inch broad, and threetwentieths of an inch thick, with two pieces of iron of one half the length, but the fame breadth and thicknefs as one of the hard bars; and let all the bars be marked with a line quite round them at one end.

Then take an iron poker and tongs (Plate Vl. Fig. i.) the larger they are and

* There are various methods of making thefe magnets : this method is taken from the 47 th volume of the Pbilofophical Tranfactions, and was invented by the late Mr. Canton; to whom the learned world is indebted for many ufeful difcoveries and improvements in magnetifm, as well as clectricity.

RECREATIONS,
 123

the longer they have been ufed, the better ; and fixing the poker upright between the knees, hold to it, near the top, one of the foft bars, having its marked end downward, by a piece of fewving filk, which muft be pulled tight with the left hand, that the bar may not flide: then grafping the tongs with the right hand, a little below the middle, and holding them nearly in a vertical pofition, let the bar be ftroked, by the lower end, from the bottom to the top, about ten times on each fide, which will give it a magnetic power fufficient to lift a fmall key at the marked end; which end, if the bar was fufpended on a point, would turn toward the north, and is therefore called the north pole, and the unmarked end is, for the fame reafon, called the fouth pole of the bar.

Four of the foft bars being impregnated after this manner, lay the other two (Fig. 2.) parallel to each other, at the diftance of about a quarter of an inch, between.

124 R ATIONAL

between the two pieces of iron belonging to them, a north and a fouth pole againft each piece of iron: then take two of the four bars already made magnetical, and place them together, fo as to make a double bar in thicknefs, the north pole of one even with the fouth pole of the other; and the remaining two being put to thefe in fuch a manner as to have two north and two fouth poles together, feparate the north from the fouth poles at one end, by a large pin, and place them perpendicularly with that end downward, on the middle of one of the parallel bars, the two north poles towards its fouth, and the two fouth poles towards its north end ; flide them backward and forward, three or four times, the whole length of the bar; and removing them from the middle of this, place them on the middle of the other bar, as before directed, and go over that in the fame manner : then turn both the bars the other fide upwards, and repeat the former operation : this being done, take
the

RECREATIONS.

the two from between the pieces of iron, and placing the outermoft of the touching Bars in their room, let the other two be the outermoft of the four to touch thefe with : and this procefs being repeated till each pair of bars have been touched three or four times over, which will give them a confiderable magnetic power, put the half dozen together after the manner of the four, Fig. 3. and touch with them two pair of the hard bars, placed between their irons, at the diftance of about half an inch from each other: then lay the foft bars afide, and with the four hard ones let the other two be impregnated, Fig. $4 \cdot$ holding the touching bars apart, at the lower end, near two-tenths of an inch, to which diftance let them be feparated, after they are fet on the parallel bar, and brought together again before they are' taken off.

This being obferved, proceed according to the method defcribed above, till each

126 R A T I O N A L

pair has been touched two or three times over. But as this vertical way of touching a bar, will not give it quite fo much of the magnetic virtue às it will receive, let each pair bënow touched once or twice over, in their parallel pofition between the irons, Fig. 5, with two of the bars held horizontally, or nearly fo; by drawing at the fatme time the north of one from the middle over the fouth end, and the fouth of the other from the middle over the north end of a parallel bar; then bringing them to the middle again, without touching the parallel bar, give three or four of thefe horizontal ftrokes to each fide. The horizontal touch, after the vertical, will make the bars as ftrong as they can poffibly be made: as appears by their not receiving any additional frength, when the vertical touch is given by a greater number, and the horizontal, by bars of a fuperior magnetic power. This whole procefs may be gone through in about half an hour; and each

RECREATIONS.

of the larger bars, if well hardened, may be made to lift 28 troy ounces; and fometimes more. And when thefe bars are thus impregnated, they will give to an hard bar of the fame fize, its full virtue in lefs than two minutes; and therefore will anfwer all the purpofes of magnetifm in navigation and experimental philofophy, much better than the loadftone, which is well known not to have fufficient power to impregnate hard bars. The half dozen being put into a cafe, Fig. 6. in fuch manner, as that two poles of the fame denomination may not be together, and their irons with them as one bar, they will retain the virtue they have received. But if their power fhould, by making experiments, be ever fo far impaired, it may be reftored without any foreign affiftance in a few minutes. And if, out of curiofity, a much larger fet of bars fhould be required, thefe will communicate to them a fufficient power to
128. RATIONAL
proceed with, and they may in a fhork time, by the fame method, be brought to their full ftrength.

THE MAGNETIC PERSPECTIVE GLASS.

PRROVIDE an ivory tube, about two inches and a half long, and of the form expreffed in Plate V. Fig. 2. The fides of this tube mult be thin enough to admit a confiderable quantity of light. It is to open at one end with a fcrew: at that end there muft be placed an eye-glafs A; of about two inches focus, and at the other end, any glafs you pleafe.

Have a fmall magnetic needle, Fig. 42 like that placed on a compafs. It muft be ftrongly touched, and fo placed at the bottom of the tube that it may turn freely round. It is to be fixed on the center of a fmall ivory circle C , of the thicknefs of a counter, which is placed or the objectglafs $: D$, and painted black on the fide

- Digitized by GOOgle

RECREATIONS.

hext it. This circle muft be kept faft by a circular rim of pafteboard, that the needle may not rife off its pivot, after the fame manner as is in the compafs. This tube will thus become a compafs, fufficiently tranfparent to fhow the motions of the needle. The eye-glafs ferves more clearly to diftinguifh the direction of the needle; and the glafs at the other end, merely to give the tube the appearance of a common perfpeclive.

It will appear by aphorifm 8, that the needle in this tube, when placed over, and at a fmall diftance from, a magnet, or any machine in which it is contained, will neceffarily place itfelf in a pofition directed by that magnet, and confequently fhow where the north and fouth pole of it is placed. The north end of the needle conftantly pointing to the fouth end of the magnet.

This effect will take place, though the menagnet be inclofed in a cafe of wood, or Val. III. K even Dogtered by Google

$13_{0} \quad$ R ATIONAL

even metal, as the magnetic effluvia penetrates all bodies. You muft obferve, however, that the attracting magnet muft not be very far diftant from the needle, efpecially if it be fmall, as in that cafe its influence extends but to a fhort diftance.

This tube may be differently conftructed by placing the needle in a perpendicular direction, on a fmall axis of iron, on which it muft turn quite freely, between two fimall plates of brafs placed on each fide the tube : the two ends of the needle fhould be in exact equilibrium. The north and fouth ends of this needle will, in like manner, be attracted by the fouth and north ends of the magnetic bar. The former conftruction, however, appears preferable, as it is more eafily excited, and the fituation of the needle much more eafily diftinguifhed.

RECREATIONS.

THE MAGNETIC wAND.

PROCURE a round fick of ebony, or other wood, of about eight or ten inches long, and about half an inch thick. Let there be a hole bored through the length of it, of about two or three-tenths of an inch in diameter (fee Plate V. Fig.5.) Provide a fmall fteel rod, and let it be very ftrongly impregnated by a good magnet. Place this rod in the hollow of the wand, and clofe it at each extremity, by two fmall ends of ivory A and B, that fcrew on, and are differently formed, that you may the more eafily remember the poles of the magnetic bar.

When you prefent the north pole of this wand to the fouth pole of a magnetic needle, fufpended freely on a pivot, or to a light body, fwimming on the furface of water, or any other fluid, and in which you have placed a magnetic bar, that body

132 RATIONAL.

will then approach the wand, and prefent that fide which contains the fouth end of: the bar. On the contrary, if you prefent the north or fouth end of the wand to the north or fouth end of the needie, or of the bar, they will recede from it.

Obferve, that after the needle or the floating bar bas retired from the wand, it will prefent the other pole to it ; there-- fore as foon as the needle retires, you' muft withdraw the wand, or keep it conftantly prefented to the pole of the fame name. This wand is of ufe but in very' few experiments. To give it more force it may be armed with iron, after the manner explained in the aphorifms.

RECREATION XXVIII.

The communicative crown.

TAKE a crown piece, and bore a hole in the fide of it ; in which place a piece of wire, or a large needle well polifhed, and ftrongly touched with a magnet. Then clofe the hole with a fmall piece of pewter, that it may not be perceived. Now the needle in the magnetic perfpective before defcribed, when it is brought near to this piece of money, will fix itfelf in a direction correfpondent to the wire or needle in that piece.

Defire any perfon to lend you a crown piece, which you dextroufly change for one that you have prepared as above. Then give the latter piece to another perfon, and leave him at liberty either to put it privately in a fnuff-box, or not; he is then to place the box on a table, and you are to tell him, by means of your glafs, if K 3 the

134 RATIONAL

the crown is or is not in the box. Then bringing your perfpective clofe to the box, you will know, by the motion of the needle, whether it be there or not; for as the wedle in the perfpective will always keep to the north of itfelf, if you don't perceive it has any motion, you conclude the crown is not in the box. It may happen, however, that the wire in the crown may be placed to the north, in which cafe you will be deceived. Therefore to be fure of fuccefs, when you find the needle in the perfpective remain ftationary, you may make fome pretence to defire the perfon to move the box into another pofition, by which you will certainly know if the crown piece be there or not.

You muft remember that the needle in the perfpective muft here be very fenfible, as the wire in the crown cannot poffibly have any great attractive force.

REGRE-

RECREATION XXIX.

The magnetic table.

U^{N}NDER the top of a common table place a magnet that turns on a pivot, and fix a board under it, that nothing may appear. There may alfo be a drawer under the table, which you pull out to show that there is nothing concealed. At one end of the table there muft be a pin that communicates with the magnet, and by which it may be placed in different pofitions: this pin muft be fo placed as not to be vifible by the fpectators. Strew fome fteel filings, or very fmall nails, over that part of the table where the magnet is. Then afk any one to lend you a knife, or a key, which will then attract part of the nails or filings, in the fame manner as the iron attracts the needle, in the note to the twelfth aphorifm. Then placing your hand, in a carclefs manner, K 4 On

136 RATIONAL.

on the pin at the end of the table, you alter the pofition of the magnet; and giving the key to any perfon you defire him ta make the experiment, which he will then not be able to perform. You then give the key to another perfon, at the fame time placing the magnet, by means of the pin, in the firft pofition, when that perfor will immediately perform the experiment.

RECREATION XXX.

The myterious watch.
$\mathbf{Y}^{(O U}$ defire any perfon to lend you his watch, and afk him if he thinks it will or will not go, when it is laid on the table. If he fay it will, you place it over the end of the magnet, and it will prefently fop*: You then mark with chalk, or a pencil, the precife point where you placed

[^10]the

RECREATIONS.

the watch, and moving the pofition of the magnet, as in the laft Recreation, you give the watch to another perfon, and defire him to make the experiment, in which he not fucceeding, you give it to a third perfon, at the fame time replacing the magnet, and he will immediately perform the experiment.

RECREATION XXXI.

The bouquets.

IN a box of light wood, that fhuts with hinges, and is about nine or ten inches long, five or fix wide, and one inch thick, as A BCD (Pl. VIl. Fig. 1.) fix a fmall vafe, that has a hole in one fide, through which is to pafs the end of a bouquet of artificial flowers; of which you are to have two, as F and G. The two principal ftalks of thefe bouquets are to be made of fteel, that has been ftrongly touched; and you are to obferve that the north pole of one of thefe bouquets is to be placed

${ }_{1} 3^{8} \quad$ RATIONAL

placed in the vafe, and the other is to be at the top of the flower. Both thefe wires, as well as well as all the others that compofe the flowers, are to be covered with filk.

You prefent one of thefe bouquets to any perfon, and give him the choice either of placing it privately in the vafe or not. Then, fhutting the box, he is to give it you. When applying the magnetic perfpective to it, you difcover, by the motion of the needle, whether it be there or not; for if it be not there, the needle will not fix itfelf to either end of the box.

You then prefent both the flowers, and give him the choice of placing either of them, in like manner, in the box; and by applying the perfpective as before, you difcover, by the fixing of the ncedle, which of the bouquets is there placed. You may yet farther diverfify this Recreation by having three flowers, of which one

RECREATIONS.

one mult not be impregnated; and give the perfon the choice of placing either of them in the box : but in this cafe he muft put in one of them,

You muft obferve that the needle in the perfpective, in making this experiment, muft be very fenfible: it will be proper to try its force on the flalk of the bouquet before the flowers are placed on it.

RECREATION XXXII.

The magnetic dial.
P
ROVIDE a circle of wood or ivory, of about five or fix inches diameter, as Pl. VII. Fig. 2. which muft turn quite free on the ftand B , in the circular bor$\operatorname{der} \mathrm{A}$: on the circle muft be placed the dial of pafteboard C , whofe circumference is to be divided into twelve equal parts, in which muft be infcribed the numbers from one to twelve, as on a common dial. There muft be a fmall
groove
$140 \quad$ RATIONAI
groove in the circular frame D , to receive the pafteboard circle: and obferve that the dial muft be made to turn fo free, that it may go round, without moving the circu. lar border in which it is placed.

Between the pafteboard circle and the bottom of the frame, place a fmall artificial magnet E, Fig. 3. that has a hole in its middle, or a fmall protuberance. On the outfide of the frame place a fmall pin P, which ferwes to fhow where the magnetic needle I , that is placed on a pivot at the center of the dial, is to ftop, This needle mult turn quite free on its pivot, and its two fides fhould be in exact equilibrium.

Then provide a fmall bag, that has five or fix divifions, like a łady's work bag, but fmaller. In one of thefe divifions put fmall fquare pieces of pafteboard, on which are wrote the numbers from one to twelve; and if you pleafe you may put feveral of each number. In each of the other

RECREATIONS.

other divifions you muft put twelve or more like pieces, obferving that all the pieces in each divifion mult be marked with the fame number.

Now the needle being placed upon its pivot, and turned quickly about, it will neceffarily fop at that point where the north end of the magnetic bar is placed: and which you previoully know by the fituation of the fmall pin in the circular border.

You therefore prefent to any perfon that divifion of the bag which contains the feveral pieces on which is wrote the number oppofite to the north end of the bar, and tell him to draw any one of them he pleafes. Then placing the needle on the pivot, you turn it quickly about, and it will neceffarily ftop, as we have already faid, at that particular number.

Another Recreation may be made with the fame dial, by defiring two perfons to
draw

142 R-ATIONAL

draw, each of them, one number out of two different divifions of the bag, and if their numbers, when added together, exceed twelve, the needle or index will fop at the number they exceed it: but if they do not amount to twelve, the index will fop at the fum of thofe two numbers. In order to perform this Recreation you muft place the pin againft the number five, if the two numbers to be drawn from the bag beten and feven : or againft nine, if they be feven and two.

If this Recreation be made immediately after the former, as it eafily may, by dextroufly moving the pin, it will appear fill the more extraordinary.

RECREATIONS.

143

RECREATION XXXIII.

The magnetical cards.

0N the pafteboard circle mentioned in the preceding Recreation, inftead of the twelve numbers, inferibe the four fuits of the cards, and the eight cards of each fuit that are ufed at piquet, in the following order:

Divifions.

$$
\begin{aligned}
\text { 1. } & \text { Ace } \\
\text { 2. } & \text { King } \\
\text { 3. } & \text { Knave } \\
\text { 4. } & \text { A heart } \\
\text { 5. } & \text { Queen } \\
\text { 6. } & \text { A diamond } \\
\text { 7. } & \text { An eight } \\
\text { 8. } & \text { A fpade } \\
\text { 9. } & \text { A ten } \\
\text { 1. } & \text { A feven } \\
\text { 1. } & \text { A club } \\
\text { 12 } & \text { A nine, }
\end{aligned}
$$

as is expreffed in Plate VII. Fig. 4. You muft have two fimilar needles, which

144 RATIONAL

however muft be diftinguifhable by fomie private mark. Thefe needlés mult have their oppofite points touched. Of the eight cards of piquet infcribed on the circle there are only four that are of ufe here, which are thofe that are oppofite the four pips: the others however are ufed in the fecond part of this Recreation.

When you place that needie of index on the pivot whofe pointed end is touched, it will ftop at one of the four pips againft which you have placed the pin in the frame: then taking that needle off, and placing the other, it will fop at the oppofite point.

Therefore defire a perfon to draw a card from a piquet pack, offering that card againft which you have placed the pin of the dial, which you may eafily do by having a long card, as ìs explained in the firf volume. Tell the perfon who draws
the

RECREATIONS.

the card to keep it clofe, that it may not be feen. Then give him one of the two needles, and defire him to place it on the pivot and turn it about, when he will fee it ftop at the colour of the card he has chofe: then taking that needle off, change it dextroully for the other, and give that to another perfon, telling him to place and turn it in like manner, and it will ftop at the napme of the card the firft perfon chofe.

If the firft perfon fhould not draw the card you intend, you cannot directly perform this Recreation : therefore to prevent any fufpicion that you have failed in your defign, cut the cards yourfelf at the large card, and let him put the card he drew under that card, then give them. to one or more perfons to cut, and when you perceive the long card is at bottom, you tell the perfon that the card he drew is at the top of the pack: and after this little

[^11]
46 RATIONAL

diverfion you may begin the Recreation again.

The foregoing Recreation may be diverfified by having a pack of piquet cards in which there are two longer than the reft, and that anfwer to two that are oppofite each other on the circle, and were not ufed in the other Recreation. Then let two perfons draw each of them one of thofe two cards.

Prefent the needle that will point to the fecond perfon's card to the firft perfon: after which take it off, and changing it privately, prefent to the fecond perfon the needle that will point to the firft perfon's card. You will obferve that this Recreation does not fhow the particular fuite in which the two cards were drawn.

RECRE-

RECREATIONS.
147.

RECREATION XXXIV.

The dextrous painter.

PROVIDE two fmall boxes as M and N, (Pl. VIII. Fig. 1.) four inches wide, and four inches and a half long. Let the box M be half an inch deep, and N twothirds of an inch. They muft both open with hinges and fhut with a clafp. Have four fmall pieces of light wood, as OPQR in the fame plate, of the fame fize with the infide of the box M, and about one third of an inch thick. In each of thefe let there be a groove, as AB, EF, CD, $\mathbf{G H}$, thefe grooves muft be in the middle, and parallel to two of the fides. In each of thefe grooves place a flrong artificial magnet, as V . The poles of thefe magnets muft be properly difpofed with regard to the figures that are to be painted on the boards; as is expreffed in the plate. Cover the bars with paper to prevent their being feen; but take care in pafting it on

$$
\dot{L} 2 \quad \text { not }
$$

148 R A T I O N A L

not to wet the bars, as they will thereby ruft, which will confiderably impair their virtue. When you have painted fuch fubjects as you choofe, you may cover them with a very thin clear glafs.

At the center of the box N , place a pivot T, on which a fmall circle of pafteboard OPQR, Fig. 2. is to turn quite free; under which is to be a touched needle S. Divide this circle into four parts, which are to be difpofed with regard to the poles of the needle, as is expreffed in the figure. In thefe four divifions you are to paint the fame fubjects as are on the four boards, but reduced to a fmaller compafs. Cover the infide of the top of this box with a paper M, (fee Fig. 1.) in which mutt be an opening D, at about half an inch from the center of the box, that you may perceive, fucceffively, the four fmall pictures on the pafteboard circle juft mentioned. This opening is to ferve as the cloth on which the little
paintcr

!
\vdots
$?$
$\%$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

Digitized by GOOgle.

RECREATIONS. 149

painter is fuppofed to draw one of the pictures. You may cover the top of the box, if you pleafe, with a thin glafs.

Then give the firft box to any perfon, and tell him to place any one of the four pictures in it privately, and when he has clofed it, to give it yqu. You then place the other box over it, when the moveable circle, with the needle, will turn till it comes in the fame pofition with the bar in the firft box. It will then appear that the little dexterous painter has already copied the picture that is inclofed in the firft pox.

H3 RECRE

159 RATIONAL

RECREATION XXXV.

The cylindric oracle.

PROVIDE a hollow cylinder of about fix inches high, and three wide, as A B, Pl. IX. Fig. I. Its cover CD, muft be made to fix on any way. On one fide of this box or cylinder let there be a groove, nearly of the fame length with that fide; in which place a fmall fteel bar as $\mathrm{H}_{\text {, }}$ that is ftrongly impregnated; with the north pole next the bottom of the cylinder. On the upper fide of the cover defcribe 2 circle, and divide it into ten equal parts, in which are to be wrote the numbers from one to ten, as is expreffed in the figure. Place a pivot at the center of this circle, and have ready a magnetic needle. You are then to provide a bag, in which there are feveral divifions, like that defcribed in the $3^{2 d}$ Recreation. In each of thefe divifions put a number of papers,

RECREATIONS.

on which the fame, or fimilar queftions, are wrote.

In the cylinder put feveral different anfwers to each queftion, and feal them up in the manner of fmall letters. On each of thefe letters or anfwers is to be wrote one of the numbers on the dial or circle at the top of the box. You are fuppofed to know the number of the anfwers to each queftion,

You then offer one of the divifions of the bag, obferving which divifion it is, to any perfon, and defire him to draw one of the papers. Next put the top on the cylinder, with that number which is wrote on the anfwer directly over the bar. Then placing the needle on the pivot you turn it brifkly about, and it will naturally ftop at the number over the bar. You then defire the perfon who drew the queftion to obferve the number at which the needle ftands, and to fearch in the box

$$
\mathrm{L}_{4} \quad \text { for }
$$

$152 \quad$ RATIONAL
for a paper with the fame number, which he will find to contain the anfwer.

You may repeat the experiment by offering another divifion of the bag to the fame or another perfon: and placing the number that correfponds to the anfwer over the magnetic bar, proceed as before,

It is eafy to conceive of feveral anfwers to the fame queftion. For example, fuppofe the queftion to be. Is it proper to marry ?

Anfwer I: While you are young note yet, when you are old not at all.
2. Marry in hafte, and repent at leifure.
3. Yes, if you can get a good fortune, for fomething has fome favour, but nothing has no flavour.
4. No, if you are apt to be out of humour with yourfelf; for then you will have two perfons to quarrel with.
5. Yes,

REGREATIONS.

5. Yes, if you are fure to get a good hufband (wife); for that is the greateft bleffing of life. But take care you are fure.
6. No, if the perfon you would marry is an angel; unlefs you will be content to live with a devil.

RECREATION XXXVI.

The myftical dial.

TN a box A BCD, (Plate IX. Fig. 2.) of about four inches fquare, and that fhuts with a hinge, let there be an opening O, of three inches and a half fquare, and half an inch deep.

Provide four fquare pieces of wood E , F, G, H, Fig. 3. of the fame fize with the opening in the box. On thefe pieces defcribe the cirles I L M N, which divide into four equal parts by the diagonals I M and $L \mathbf{N}$ and then fubdivide the parts NM and IL into four other equal parts: in each fquare piece
piece make a groove, as P, Q, R, S, and in each groove place a magnetic bar: then cover the fquares with paper, and write on them tine words two, fix, eight, and twelve, as is expreffed in the figure,

On another fquare piece, Fig. 4. of the fame fize with the furface of the box, defcribe a circle, and divide it into four equal parts by the diagonals MP and NO: then fubdivide each of thofe four parts into four other equal parts; forming in the whole fixteen equal divifions, in which you are to write the numbers expreffed in that figure. You will obferve that on the fide MN , are wrote the numbers that are in the other four fquares; on the oppofite fide OP, the double of thofe numbers; on the fide $N \mathrm{P}$, the half of thofe numbers; and on the oppofite fide MO, the triple of the firft numbers. Fix a pivot at the center of this circle, and on it place a magnetic needle.

Dontreat by Google

RECREATIONS: $\quad 155$

You then give the four fquare pieces to a perfon, and defire him to put any one of them in the box, then to fhut it, and place it himfelf on the table. He is next to choofe whether the index of the dial fhall point to the number of the fquare he has placed in the box, its half, its double, or triple; and you then place the dial over the box in the proper pofition. For the north pole of all the bars in the four fquare pieces being on the fame fide, the index will neceffarily fop at that fide; and confequently, as the dial is placed, will point to the whole, the half, the double, or triple of each number,

RECRE-

15^{6} RATIONAL

RECREATION XXXVII.

The enchanted ewer.

FIX a common ewer as A, Plate X. Fig. I. of about twelve inches high, upon a fquare ftand BC , in one fide of which there muft be a drawer D , of about four inches fquare and half an inch deep. In the ewer place a hollow tin cone, inverted, as A B, Fig. 2. of about four inches and a half diameter at top, and two inches at bottom; and at the bottom of the ewer there muft likewife be a hole of two inches diameter.

Upon the ftand, at about an inch diftance from the bottom of the ewer, place a fmall convex mirror H, Fig. 2. of fuch convexity that a perfon's vifage, when viewed in it, at about fifteen inches diftance, may not appear above two inches and a half long.

RECREATIONS.

Upon the ftand likewife, at the point I, Fig. 2. place a pivot of half an inch high, on which muft be fixed a touched needle $R Q$, inclofed in a circle of very thin pafteboard OS, Fig. 3. of five inches diameter. Divide this pafteboard into four parts, in each of which draw a fmall circle: and in three of thefe circles paint a head as x, y, z, the drefs of each of which is to be different, one, for example, having a turban, another a hat, and the other a woman's cap. Let that part which contains the face in each pi\&ure be cut out: and let the fourth circle be entirely cut out; as it is expreffed in the figure. You muft obferve that the poles of the needle are to be difpofed in the fame manner as in the plate.

You are next to provide four fmall frames of wood or pafteboard, z, x, y, z, Fig. 4. each of the fame fize with the infide of the drawer. On thefe frames muft be painted the fame figures as on the circular

158 RATIONAL

cular pafteboard, with this difference, that there mult be no part of them cut out. Behind each of thefe pictures place 2 magnetic bar, in the fame direction as is expreffed in the plate; and cover them over with paper, that they may not be vifible.

Matters being thus prepared, you firt place in the drawer the frame w, on which there is nothing painted. You then pour a fmall quantity of water into the ewer, and defire the company to look into it, afking them if they fee their own figures as they are. Then you take out the frame w, and give the three others to any one, defiring him to choofe in which of thofe dreffes he would appear. Then put the frame with the drefs he has chofe in the drawer, and a moment after, the perfon looking into the ewer will fee his own face furrounded with the drefs of that picture.

This recreation, well performed, is highly agreeable. As the pafteboard circle

 $\xrightarrow[\text { Bo souse }]{\text { 而 }}$

$$
\begin{gathered}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\\
\hline
\end{gathered}
$$

REGREATIONS.

cle can contain only three heads, you may have feveral fuch circles, but you muft then have feveral other frames: and the ewer muft be made to take off from the ftand.

RECREATION XXXVIII.

The magician's circles.

LET there be two boxes A and B, PI. X. Fig. 5. of about fix inches fquare, and connected by the piece C , of one inch and a half wide. The depth of the boxes muft be one inch, and that of the piece half an inch. In thefe boxes and the piece place the movement AB, Fig. 6. compofed of two horizontal wheels D and \dot{E}, that have the fame number of teeth, and two pinions \mathbf{F} and \mathbf{G}. The axis of the wheel D muft pafs through the top of the box; and on it muft be placed a hand, by which it may be turned about; but that of E muft end beneath the cover of the box; a magnetic bar being placed on it, and above the box, on a fmall pivot, muft be placed a touched ncedle. This
ito RATIONAL
movement fhould be fo contrived as not to make any noife by its motion.

Draw a magic fquare in the following manner, confifting of twenty-five leffer fquares, numbered; and each line of which, whether read horizontally or perpendicularly, contains five words that give an anfwer to a queftion propofed. Let the five queftions be as follows:

1.	2.	3.	4.	
1. Are	you	leafed	with	imo
What	does	all	times	?
hould	we	wih	for	inheritan
	u	defire	re	riches?
Wh	plear		ft	ble

Then draw the fquare thus. Magic Square.

I love	2 quite	$\underset{\text { well }}{3 \cdot}$	$\begin{gathered} 4 \cdot \\ \mathrm{my} \end{gathered}$	$\begin{gathered} 5 \cdot \\ \text { hubband } \end{gathered}$
6. quite	$\begin{gathered} 7 \cdot \\ \text { pleafes } \end{gathered}$	$8 .$ what	9 wealth	$\begin{aligned} & 10 . \\ & \text { brings } \end{aligned}$
$\begin{gathered} \text { I I } \\ \text { well } \end{gathered}$	$12 .$ what	13 man	$\begin{gathered} 14 . \\ \text { craves } \end{gathered}$	$\begin{gathered} 15 . \\ \text { delight } \end{gathered}$
$\begin{aligned} & 16 . \\ & \mathrm{my} \end{aligned}$	$\begin{gathered} 17 \\ \text { wealth } \end{gathered}$	$\begin{gathered} 18 . \\ \text { craves } \end{gathered}$	much	$\begin{gathered} 20 . \\ \text { encreafing } \end{gathered}$
$\begin{gathered} 21 . \\ \text { huiband } \end{gathered}$	$\begin{gathered} 22 . \\ \text { brings } \end{gathered}$	$\begin{gathered} 23 \cdot \\ \text { delights } \end{gathered}$	$\left\|\begin{array}{c} 24 \cdot \\ \text { encreafing } \end{array}\right\|$	25 ever

RECREATIONS. 161

On each fide of the boxes place a fquare pafteboard of the fame dimenfion, and on that of A draw a circle, and divide it into thirty equal parts On that of B, draw likowife a circle, and divide it into fifteen equal parts. In the divifions of the circle A, write the words contained in the firft five columns of the following table, which compofe the foresoing queftions in the order they are there numbered. That is, the word are in the firft divifion, the word be in the fecond divifion, the word you in the third, the word what in the fourth divifion, \&zc. On the fifteen divifions of the circle B , write the words in the order they ftand in the laft column of this table. In the firft circle the words mult be wrote from right to left, and in the other from left to right.

RECREATIONS. $\quad 163$

The words being thus tranfcribed on the dials, the hands of both of them are to be placed to the correfponding divifions; for example, when the index of the dial A, is placed to the word are, that of the dial B , muft direst to the divifion which contains I love; and fo of the reft. You' muft then write on five cards the five foregoing queftions, that is, one of them on cach card.

Matters being thus prepared, you prefent the five cards to any perfon, and defire him to choofe one of them, and then let him direct the index of the firft dial fucceffively to each of the five words which compofe that queftion: while another perfon, placed by the dial to which the touched needle is placed, writes down the words it fucceffively points to, and they will be found to form the anfwer. The moft remarkable circumftance in this recreation is, that the fifteen words on the dial B, give proper anfwers to the five

[^12]$$
164 \text { R ATIONAL }
$$
queftions on the other dial, which contain thirty words; and that every anfiwerconfifts of the fame number of words with the queftion.

Thefe dials, by means of pullies, may communicate when placed on the oppofite fides of a room: and this experiment may be diverfified, by having feveral dials to place over the movement, with various words or figures: the foregoing ferving only as a fpecimen of the manner of performing recreations of this fort.

RECREATION XXXIX.

The box and dice.

MAKE a hollow pedeftal as CA, (Pl. XI. Fig. 3.) twelve inches long, nine wide, and one deep. The cover of this pedeftal muft be made to flide on and off, and not be above two-tenths of an inch thick. Toward the part A of the cover defcribe the circle B , which is to be

RECREATIO'NS. 165

divided into twenty equal parts; and on thefe parts mark the different points that can be thrown by two dice *. At the center place a pivot, on which a magnetic needle is to turn.

On the bottom of the infide of this pedeftal, and directly under the circle at top, defcribe another circle M, which muft be divided and marked in the fame manner. At the center fix a magnetic bar by a fcrew, fo that it may be eafily placed in any pofition; but not move of itfelf.

You muft have two needles, the point of one being north and the other fouti: they fhould be in appearance quite fimilar; but there muft be, however, fome mark by which you can diftinguilh them.

* The number of different points that can be thrown by two dice is twenty-one, of which there are only twenty here, as the divifions are obliged to be diametrically oppofite each other: that number however is quite fufficient fur the prefent purpofe.

$$
\mathrm{M}_{3} \quad \mathrm{On}
$$

On the pedeftal place a vafe DE, of tin or pafteboard, about twelve inehes high, In the fide of the vafe there muft be twa parts that open, one at F G, and the other at GH. Thefe openings fhould not be deeper than the depth of one die, nor wider than two; and they muft be made to fhut quite clofe, that the places where they open may not appear. The cover of the vafe D, mult take off. There muft be a communication between the top and the divifion GH , and in that divifion are to to be placed two dice of any number. In the part IK muft be placed the flider S T, which is exactly of the fame length, and open next S, where muft be placed two dice that contain the points at which one of the needles is to ftop: and in the divifion FG, two other dice that are to contain the points at which the other needle is to ftop. The bar within the pedeftal is fuppofed to be previoufly fixed to the points that anfwer to the dice.

Matters

RECREATIONS. 167

Matters being thus prepared, you open the part GH, and taking out thofe dice, you throw them in at the top, and fhow that they will fall into the fame place again. You take them out a fecond time and give them to any perfon, telling him to throw them in at top. In the mean time you incline the vafe toward your left hand, when the flider at I K will come to $\mathbf{G H}$; and thereby prevent the dice that are thrown in at top from falling into that divifion, by ftopping up the paffage. You then prefent him with the proper needle, which he places on the pivot and turns brifkly about, and when it ftops you tell him that that the dice in the vafe will have the fame points with that divifion at which it has ftopped. Which on your opening the upper divifion he will find to be true. You then take thofe dice out, and give them to another perfon: and taking the needle off the pivot dextroufly, change it for the other. You defire that perfon to throw the dice in at top, and

168 R A T I O NAL

give him the proper needle: and when it ftops, you open the divifion $\mathbf{F} \mathbf{G}$, and taking out thofe dice, he will find them alfo anfwer to the points on the divifion of the circle where the needle ftopped.

RECREATION XL.

The box of flowers.

PROVIDE a box of light wood, eight inches long, five wide, and one inch and a half deep, (Pl. XI. Fig. 2.) provide alfo two cafes F_{3} and F_{4}, five inches long, four wide, and an inch and a half thick. Thefe muft be made hollow on each fide in the manner as is expreffed in the profile E. In each of them there muft be a groove, that contains a bar O , ftrongly impregnated; the poles of thefe bars are to be difpofed in the manner expreffed in the figure: toward the part G, there mult be a flider that holds a glafs, and the fides of the cafes muft be clofed.

RECREATIONS. 169

In each of the four hollow parts in thefe two cafes, and under the glaffes, place four fmall natural flowers, of different forts, and let them be in oppofite directions, that is, the top of one flower to be level with the bottom of that on the other fide.

In whatever pofition thefe cafes are placed in the box, the poles of the bars next the hinges, will have a determinate direction. If the north pole of the bar attract the needle in the magnetic perfpective at the point X , it is the rofe that is there placed. If the fouth attract the needle, it is the jonquil. It will be the fame when thofe two poles attract the needle at Z .

If the fouth pole attract the needle at the point Y , it is the carnation that is there placed. If the north pole attract it there, it is the hyacinth : and it will be the fame when thofe two poles attract the needle at \&. You muft remember that
the

$170 \quad \mathrm{R}^{\prime \prime} \mathrm{A}$ TIO N ${ }^{\prime} \mathrm{A}$

the north pole of the bar attracts the fouth of the needle, and the fouth the north. You therefore give the two cafes, containing the flowers, to any one, and let him place them, in what pofition he pleafe, in' the box : and then, by the aid of the magnetic perfpective. you tell himimmediately where each flower is placed.

RECREATION XLI.

The box of metals.

PROVIDE a wooden box about thirteen inches long and feven wide, as A B CD, (Pl. XII. Fig. 1.) The cover of this box fhould be as thin as poffible.

Have fix fmall boxes or tablets, about an inch deep; all of the fame fize and form, as EFGHIK, that they may indifcriminately go into fimilar holes made in the bottom of the large box.
\therefore
In each of thefe tablets is to be placed a fmall magnetic bar, and their poles are to

RECREATION-S.

be difpofed as: is exprefled in the figure. Cover each of thefe tablets with a ithin plate of one of the fix following metals; viz. gold, filver, copper, iron, pewter, and lead. You muft alfo have a magnetic perfpective, at the end of which is to be two circles, one divided into fix equal parts, and the other into four, as in Fig. 2. from the center of which there muft be drawn an index N , whofe point is to be placed to the north.

Therefore, when you are on the fide CD of the box, and hold your perfpective over any one of the tablets that are placed on the holes E, F, G, fo that the index drawn on the circle is perpendicular to the fide $A B$, the needle in the perfpective will have its fouth pole directed to the letter that denotes the metal contained in that tablet. When you hold the perfecctive over one of the boxes placed in the holes $\mathrm{H}, \mathrm{I}, \mathrm{K}$, fo that the index drawn pn the circle is perpendicular to the fide

CD,

172 RATIONAE

$C D$, the fouth pole of the noedle will in like manner exprefs the name of the metal inclofed.

If the under-fide of àny one of the tablets be turned upward, the needle will be flower in its motion, on account of the greater diftance of the bar. The gold and filver will fill have the fame direction, but the four other metals will be expreffed by the letters on the interior circle.

If any one of the metals be taken away, the needle will not then take any of the above directions, but naturally point to the north; and its motion will be much flower.

You therefore give the box to any one, and leave him at liberty to difpofe all the tablets in what manner, and with which. fide upward he pleafe, and even to take any one of them away. Then by the aid of your perfpective you tell him immediately the name of the metal on each tablet, and. of that he has taken away.

This

REGREATIONS. ${ }^{173}$

This box of metals * will; on comparifon, be found far to exceed that which has been publicly exhibited: for that being compofed of fix tablets, of which two only differ in form, admits but of fix different difpofitions, whereas in this the tablets may be placed 720 different ways. In the other you muft alfo know the particular fide of the box, which in this is not at all neceffary, Nay, you may here diftinguifh each metal, though the box be completely covered with paper ; for the effect of the needle will be always the fame. The recreations with this box are therefore much more extraordinary, and its conftruction at the fame time more fimple.

* It was invented by the Duke de Pequigny, and by him communicated to M. Guyot.

${ }^{3} 74$
 RATIONAL

RECREATION XLI.

The magnetic oracle.

TN a box a foot long, three inches and three quarters wide, and one inch deep; make three equal divifions, A, B, C, (Plate XII. Fig. 3.) Have eight fmall boxes or tablets of the fame fize with the divifion B of the box, into which they fhould go only one-fourth of an inch deep. In two of thefe tablets make a groove from the oppofite angles, going from right to left, in: which place the bars A, B, Fig. 4. and in two others a groove that goes in like manner from left to right, in which put the bars C, D. In two others a groove that divides them vertically into two equal patts, and place in them the bars E, F: and in the two laft a groove that divides them horizontally, in which place the bars G, H. The poles of each of thefe bars are to be placed in the manner expreffed in the figure.

RECREATIONS. ITy

Upon a board five inches fquare defrribe the circle NO , (Fig. 5.) which is to be divided into eight equal parts, in each of which write one of the numbers 1,2 , $3,4,5,6,7,8$, as in the figure, and let this board be placed on the part B of the box A B C.

Provide 32 fmall rundlets of wood or ivory, of three quarters of an inch long, and pierced with a hole of about one quarter of an inch diameter, Fig. 3. and mark thefe barrels with the numbers $1,2,3$, $4,5,6,7,8$.

Then cover the tablets with paper to conceal the magnetic bars; and on each of them write fome queftion, in fuch manner that the laft word may direct to the north pole of the bar.

On fmall dips of paper write four different anfwers to each queftion, then roll them up and put them into the little rund-

176 RATIONAL

rundlets. You muft obferve that the fame number is to be wrote on four of the rundlets, and one of the four anfwers put into each of them ; according to the direction of the needle of the dial. The little barrels being thus prepared, are to be placed on the two fides A and C of the box, Fig. 3 .

You then give the eight tablets to any one, and leave him at liberty to place which of them he pleafe on the box ; which being done he is to turn the rundlet round, and when it ftops he is to choofe one of thofe rundlets that are marked with the number where it ftops, in which he will neceffarily find the proper anfwer. To diverfify this Recreation, the favourable anfwers may be placed on one fide of the box, and the unfavourable on the other, fo that you may tell him to choofe either the one or the other.

RECRE-

'LATEXII

North

RECREATIONS.
 177

RECREATION XLIIİ.

The incomprehenfible cards

INSERT in the middle of a card, and parallel to its two longeft fides, pare of a watch fpring, as thin as poffible, and frongly impregnated: let it be fo concealed as not to afford the leaft fufpicion. This card fhould be a little longer than the others of the pack in which it is placed.

Offer any one to draw a card out of the pack, and prefent the long card dextroully to his hand. You then give him all the cards, and leave him at liberty to replace that card in the pack or not. He is then to lay the pack on the table, and by applying your magnetic perfpective, you will difcover whether the card be there or not.

378 . R A.TIONAL
If the perfon fhould not draw that card, you muft be ready with fome other recreation, to prevent fufpicion of having failed in your defign.

RECREATION XLIV.

The two magical cards.

PROVIDE a box ABCD (Plate XII. Fig. 6.) four inches fquare and three quarters of an inch deep. Cover its top with a pafteboard, in which there is an opening at A. At the center of this box let there be a pivot that fupports a circle of pafteboard EF, on which is painted two cards : and at its center is to be a magnetic needle; as is expreffed in the figure.

Now if you lay the magnetic wand, defcribed at the beginning of this volume, fo that the north pole of the bar it contains be next the middle of one of the fides of the box, the magnetic needle, with the
pafte-

RECREATIONS.

pafteboard circle, will turn fo that its fouth pole will be next the wand. But if the fouth end of the wand be next the box, the north end of the needle will prefent itfelf, and confequently one or the other of the cards will be vifible. You muft therefore have a pack of cards in which one of the fame fort with thofe painted on the circle is a fmall matter longer, and the other, wider than the reft.

Being thus prepared, you defire two perfons to draw each one card, taking care to prefent thofe two cards, fo artfully that they can fcarce draw any other. Then holding the wand carelefly in your hand, you afk one of the parties whether his own or the other perfon's card thall appear firft. You then touch the box with your magic wahd, and lay it on the table, as if the more eafily to open the box. After giving the needle a fhort time to fettle, you open the box and fhew the card defired.

$$
\mathrm{N}_{2} \quad \mathrm{To}_{0}
$$

$180 \quad$ R A TIONAL

To fhow the other card, you place the box on the table with the other fide next the wand.

You may fhuffle the cards before you offer them, as you will always diftinguinh by the touch where the two cards are. If the parties fhould not draw thofe two cards, you muft be ready with fome other amufement, that it may not be perceived you have failed.

RECREATION XLV.

The magnetic planetarium.

CONSTRUCT a round box ILMN, of eight or nine inches diameter, and half an inch deep, (Plate XIII. Fig. 1.) On its bottom fix a circle of pafteboard, on which draw the central circle A, and the feven circumjacent circles $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, F, G, H. Divide the central circle into feven equal parts by the lines $\mathrm{AB}, \mathrm{AC}_{\text {, }}$ AD, AE, AF, AG, and AH, which muft

RECREATIONS. 18r

muft pafs through the centers of the other circles and divide each of them into two equal parts. Then divide the circumference of each of thofe circles into 14 equal parts, as in the figure.

You are likewife to have another pafteboard of the fame figure, and divided in the fame manner, which muft turn freely in the box, by means of an axis placed on a pivot, one end of which is to be fixed in the center of the circle A. See Fig. 2.

On each of the feven fmaller circles at the bottom of the box, place a magnetic bar, two inches long, in the fame direction with the diameters of thofe circles, and their poles in the fituations expreffed in the figure.

There muft be an index O , like that of the hour-hand of a dial, which is to be fixed on the axis of the central circle, and by which the pafteboard circle in the box

N 3 may

182 RATIONAL

may be turned about. There muft be alfo a needle P, that will turn freely on the axis, without moving the circular pafteboard.

In each of the feven divifions of the central circle write a different queftion, and in another circle, divided into 12 parts, you may write the names of the 12 months, In each of the feven circles write two anfwers to each queftion, obferving that there muft be but feven words in each anfwer ; in the following manner.

In the firt divifion of the circle \mathbf{G},which is oppofite the firft queftion, write the firft word of the firft anfwer. In the fecond divifion of the next circle write the fecond word; and fo on to the laft word, which will be in the feventh divifion of the feventh circle.

In the eighth divifion of the firft circle write the firft word of the fecond anfwer :

Platiex xil.

S. 2 orge Souh.

RECREATIONS. $\quad 183$

in the ninth divifion of the fecond circle; write the fecond word of the fame anfwer; and fo on to the fourteenth divifion of the' feventh circle, which muft contain the laft word of that anfwer.

The fame muft be done for all the feven queftions, and to each of them muit be affigned two anfwers, the words of which are to be difperfed through the feven circles.

At the center of each of thefe circles place a pivot, and have two magnetic needles, the pointed end of one of which muft be north, and the other fouth.

Now, the index of the central circle being directed to any one of the queftions, if you place one of the two magnetic needles on each of the feven leffer circles, they will fix themfelves according to the direction of the bars on the correfpondent

$$
\mathrm{N}_{4} \text { circles, }
$$

184 R A T I ONAL

circles, at the battom of the box, and confequently point to the feven words that compofe the anfwer. If you place one of the other needles on each circle, it will point to the words that are diametrically oppofite to thofe of the firft anfwer, the north pole being in the place of the fouth pole of the other.

You therefore prefent this planetarium to any perfon, and defire him to choofe one of the queftions there wrote; and you then fet the index of the central circle to that queftion, and putting one of the needles on each of the feven circles, you turn it about, and when they all fettle they will point to the feven words that compofe the anfwer. The two anfwers may be one favourable and the other unfavourable: and the different needles will ferve to diverfify the anfwers when you repeat the experiment,

There

RECREATIONS.

There may alfo be a moveable needle to place againft the names of the months; and when the party has fixed upon a queftion, you place that needle againft the month in which he was born, which will give the bufinefs an air of more myftery.

At the center of the large circle may be the figure of the fun, and on each of the feven fmaller circles one of the characters of the five planets, together with the earth and moon. This Recreation, well executed, is one of the moft entertaining that magnetifm has produced.

CON-

186 RATIONAL

CONSTRUCTION OF THE MAGNETICAL AND MECHANICAL TABLE.

LET the table ABCD (Plate XIV: Fig. i, and 2.) be conftructed by an able workman, as near as poffible after the following plan and dimenfions.

Firft, this table muft be five feet long, by two feet and a half wide. Its top muft be only half an inch thick, except at the edge, which is to be one inch and a half thick, and go out beyond the feet of the table about an inch. This precaution is quite neceffary, that the magnetic apparatus concealed beneath the furface of the table may be the nearer to the pieces placed on it; and that there may be no room to imagine that there are any parts concealed.

Secondly, the four feet E, F, G, H, Fig. 2. as well as the two crofs-pieces \mathbf{L}, L, muft be hollow, being formed of four

RECREATIONS. 187

four pieces of wood half an inch thick, and two inches wide, and confequently the fpace between them a fquare inch.

In the third place, there muft be a fecond furface to the table, placed under the other, and at one inch and a half diftance from it. Fourthly, at one end of the tableframe, and parailel with the crofs-pieces L, L, there muft be a ftep MN, which joins to the frame ; the joints of this ftep are likewife to be hollow, and communicate with the two hind feet of the table. This table muft be made with great care, that there may be no room to furpect there are any cavities in the legs or top: and if any of the joinings fhould appear, they muft be painted to prevent all fufficion. The table being thus prepared may be covered with a green cloth, on which are to be placed the different pieces hereafter defribed, by which the fubfequent recreations are to be performed.

188 R A TIONAL

On the fide of the lower plane of the table next AB , at eight inches diftance from the point O, and at the point P, fix the piece QR, Fig. 3. compofed of a pulley S, of fix inches diameter, and onethird of an inch thick, on which is fixed a brafs rod; to one end of which muft be faftened two magnetic bars, eight inches long, and bound together by four brafs rings; or a fingle bar, ftrongly impregnated; or elfe an impregnated horfe-fhoe, placed as XYZ.

Beneath this pulley, and at its center, fix the brafs barrel X, of one inch and a half diameter, and half an inch thick, in which fix the fpring of a clock. At the end of the axis of the pulley, and beyond the brafs barrel, let there be a fquare hole, that is to come out, under the table, and clofe to it, and by which is to be faftened a fmall wheel with a catch, that the fpring in the barrel may be contracted or extended at pleafure. Round the pulley let there

RECREATIONS.

go a fmall fring, fuch as is not much apt to dilate or contraet *. It fhould firft pafs over a fmall pulley near the opening into the foot H , and then over another at the bottom of the fame foot \dagger, and oppofite to the communication with the ftep, that is may go out behind the partition W.

Againft the other fide of the partition - there is to be placed a table (Plate XV.) of two feet and a half long, and placed at a convenient height for the perfon who is to draw the ftring that communicates with the magnetic apparatus, clearly to difinguifh the numbers, letters, and words, there wrote.

The table is thus formed. Firf, meafure the exact diftance that the cord paffes over while the pulley makes a com-

* It may be braided like a lace, as that is not much fubject to contract.
+ Thefe pullies thould be fixed on their axes, that they may not make any noife in turning.
plete
190° R ATIONAL
plete revolution, and mark that diftance on the table, as from V to Z .

Have three circles of wood, covered with paper, as A, B, and C, Fig. I, 4, and 5 . Divide that of A into 24 equal parts, and in each of thofe parts write one of the 24 letters of the alphabet. Divide the firft column of the table into the fame number of equal parts, and in each of them write the fame letters and in the fame order.

- Then divide the circle B into 3^{2} equal parts, in each of which write the name of one of the cards of piquet. Divide the fecond column of the table in the fame number of equal parts, and in them write the fame names in the fame order.

Laftly, divide the circle C , into 18 equal parts, in each of which write one of the numbers from 1 to 15 , and the three fractions $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$. Then divide the third column of the table into the fame number

RECREATIONS.

of equal parts, and in them write the fame numbers likewife *.

The pulley C muft be placed above:the table, and over it muft run the ftring, at the end of which is to hang the weight D, fufficiently heavy to keep it diftended, but not to put the pulley on the table in motion. To this ftring muft alfo be annexed the wire or index E , which mult be moveable, that it may be adapted to the unavoidable contraction or dilation of the ftring, occafioned by the moifture or drynefs of the air: as otherwife it would not conftantly anfwer to the divifions on the board.

Provide a copper bafon, quite thin, about a foot in diameter, and one inch and a half deep. It fhould have two handles, that

* You may hàve other circles, on which may be wrote the 21 chances on the dice; a number of anfwers to certain queftions, and a great variety of other matters; as every one's fancy will fuggeft.
you
you may take it readily off the table with out fpilling the water. This bafon is to go into each of the circles defcribed above. Each of thofe circles alfo muft have a private mark, by which you may place it on the table in its proper pofition.

Then, of very light wood or cork, make a fmall figure, in the fhape of a firen or mermaid, in which is to be placed a magnetic bar, in a proper direction with regard to the magnetic horfe-fhoe. This figure is to float upon the furface of the water in the bafon *.

In the laft place, part of the ftep at the bottom of the frame muft be moveable, in the manner of a lever, and communicate with the other fide of the partition, fo as to be vifible to the perfon behind it, but not to any one in the room where the machine ftands.

[^13]Now

RECREATIONS. 193

Now, matters being thus prepared, when you place the bafon on the table in one of the circles, fo that its center is over the axis that turns the magnetic piece concealed in the table, if the perfon behind the partition draw the index in the ftring up to any one of the numbers, letters, or words on Pl . XV. the magnetic piece on the table will place itfelf againft the fame number, letter, or word. Therefore, if you place the firen on the furface of the water, it will, by means of the magnetic wire concealed in it, direct itfelf to that part where the large bar or horfe-fhoe is moved. If the perfon behind the partition draw the wire up and down, before he fix it, the firen will in like manner make various notions, as if undetermined where to fix。

RECREATION XLVI.

To make the firen of the magnetic table - point to all the letters of a given word.

YOU muft have three card's, on which are wrote the names of three perfons or cities, or any other words you pleafe. One of thefe cards muft be of the common fize, another a little longer, and the third a little wider. Thefe cards you give' to any perfon and defire him to choofe which of them he thinks proper, and to' keep it to himfelf. He is then to return you the two remaining cards, and youwill difcover immediately, by the touch, which card he has chofe. You are previoully to agree with the perfon behind the partition on the three different expreffions, which denote the card that is chofen. For example, you are to fay either, The firen Sall name the word; or Jhe flall point to the letters that compofe the word; or fle

RECREATIONS.

coill find out the word. Then your confederate, after giving the firen fome indeterminate motions, will direct her fucceffively to the feveral letters that compofe the word wrote on the card.

Note, the confederate muft be of a ready apprehenfion; and to affift his memory, adjoining to the forementioned table, he fhould have a paper, on which are wrote the feveral figns you are to give him.

The firen is to point out the time exprefed by any given watch.

You defire any perfon to lend you his watch, and laying it on the table, you tell him that the firen fhall fhow the precife time at which it then is. You then mount the ftep, as if to place the watch more properly; and at the fame time prefs down the moveable piece as many times as are equal to the hours. The perfon behind the parO_{2} tition

196 RATIONAL

tition obferving carefully that numbery, makes the firen point to it. You then make a fimilar fignal for the quarters and minutes, and your confederate, in like manner as before, makes the firen point refpectively to them.

To make the firen point to three numbers that have been chofen by three different perfons.

You muft have a fmall bag, like that defcribed in the $3^{2 d}$ Recreation of this volume, in which there are four divifions. In the firft of them you muft put the numbers from 1 to 15 ; and in each of the three others feveral tickets that have the fame number, but not higher than 15. You draw out a handful of tickets from the firf divifion, and fhow that they confift of different numbers. Then put them again in that divifion, and offer one of the other divifions to the three perfons, from which they are each to draw a fingle number.

RECREATIONS.
 197

number. Your confederate being previoufly informed what thofe three numbers are, and in what order they are to be drawn, will immediately direct the firen to them,

After the parties have drawn the three numbers, you may afk whether the firen thall point to their numbers feparately, or to the amount of the whole. Suppofe, for example, the three numbers be 5,7 , and 11, The firen is then made to point firft to 2 , and then to 3 , which form 23, the amount of thofe numbers.

You may likewife let the fame perfon draw two or three numbers, and the firen fhall fhow him either thofe numbers feparately, their amount, or their product when multiplied together.

Q 3 Aper-

198 RATIONAL

A perfon having drawn a card from the. pack, the firen points to the name of that card on the circle.

The perfon having drawn, from a piquet pack, the card that you have previoully agreed on with your confederate, by your prefenting that card in the manner: already defcribed, he immediately directs the firen to that card. It will be proper to agree on a fecond card with your confederate, that you may repeat the experiment if it fhould be defired.

A queftion being propofed by any perfon, the, jiren gives the anfwer; tbo' the perfon, who exhibits the recreation does not know. the queftion.

On five cards write five fuch different queftions as may be all anfwered by the fame word : as for example.

1. What can be in all parts of the earth at the fame time ?
2. What
3. What does the ivy round the oak ?
4. What muft a man have to carry him crofs the ocean?
5. What is it the hunter does with his horn?
6. What makes a great noife but no fhow?
7. What brings trees, towers and fteeples to the ground ?

All thefe queftions are to be anfwered by the word wind. You therefore fhow that the cards contain different queftions, and then give them to any perfon, telling him to choofe one of them privately, and, keeping it to himfelf, to put the reft in his pocket; whịch being done, your confederate directs the firen to the letters that compofe that word. If you would repeat the experiment, you muft have another fet of cards which have a different anfwer, that it may not appear that the fame word anfwers all the cards. This recreation is
04
eafily
$200 \quad \mathrm{RATIONAE}$
eafily performed, and occafions no fmall degree of furprife.

The principal part of thefe recreations with the firen were invented by M. Guyot, and were therefore never exhibited in public before the appearance of his book.

RECREATION XLVII.

The fagacious fwan.

PROVIDE a box X Y, (Pl. XVI. Fig. r.) eighteen inches long, nine wide, and two deep, the top of which is to flide on and off, at the end Y. Toward the end X , defcribe a circle of fix inches diameter, round which are to be fixed fix fmall vales of wood or ivory, of one inch and a half high; and to each of them there, muft be a cover.

At the end Y place an egg B, of ivory. or other matter, of about three inches and
a half:

RECREATIONS.

2 half high, with a cover that fhuts by a hing, and faftens with a fpring. It muft be fixed on the ftand C, through which, as well as the bottom of the egg, and the part of the box directly underneath, there muft pafs a hole of one-third of an inch in diameter. In this cavity place an ivory cylinder F , that can move freely, and rifes. or falls by means of the fpring R. You muft have a thin copper bafon A, of fix inches diameter, which is to be placed on the center of the circle at X, and confequently in the middle of the fix vafes.

Let a proper workman conftruct the movement expreffed by Fig. 2. which is compofed of a quadrant G, 'that has 16 teeth, and is moveable about an axis in the ftand H , that has an elbow, by which it is fcrewed to the bottom of the box at L. To the quadrant there muft be joined the ftrait piece K. The horizontal wheel M , has 24 teeth, and is fupported by the piece S, which is fcrewed to the end of the box
box next Y. On the axis of this wheel place a brafs rod O P, five inches long, and at the part Oplace a large bar or horfe-fhoe, of a femicircular form, and about two inches and a half diameter, frongly impregnated. The fteel rod V, takes at one end the teeth of the quadrant G, by the pinion F , and at the other end the wheel M , by the perpendicular wheel N , of 30 teeth; the two ends of this rod are fupported by the two ftands that hold the other pieces. Under the piece K , that joins to the quadrant, muft be placed the fpring R , by which it is raifed, and pufhes up the cy* linder that goes through the ftand \mathbf{C} into the egg:

You muft alfo have fix fmall etwees of cafes as Y, Fig. 3. They muft be of the fame circumference with the cylinder in the ftand, and round at their extremities: their length mult be different, that when they are placed in the egg, and the lower end enters

RECREATIONS,

enters the hole in which is the cylinder ${ }_{2}$ they may thruft it down more or lefs, when the top of the egg, againft which they prefs, is faftened down; and thereby lower the bar that is fixed to the end of the quadrant, and confequently, by means of the pinion F , and wheels N, M, turn the horfefhoe that is placed upon the axis of the laft wheel *.

In each of thefe etwees place a different queftion, wrote on a llip of paper and rolled up, and in each of the vafes put the anfwer to one of the queftions; as you wili know, by trials, where the magnetic bar or horfefhoe will ftop.

Laftly, provide a fmall figure of a fwan, or what other you pleafe, made of cork or enamel, in which you muft fix a touched needle, of the largeft fize of thofe commonly ufed in fewing.

* Thefe exact length of thefe etwees can be determined by trials only; which trials, however, may be made with round pieces of wood.

Being

Ro4 R A TIONAL
Being thus prepared, you offer a perfon the fix etwees, and defire him to choofe any one of them himfelf, and conceal the others, or give them to different perfons. He is then to open his etwee, read the queftion it contains to himfelf, and return the etwee to you, after replacing the queftion, You then put the etwee in the egg, and placing the fwan upon the water in the bafon, you tell the company the will prefently difcover in which of the vafes the anfwer is contained. The fame experiment may be repeated with all the etwees.

This apparatus is more commodious than that of the firen, as it may be eafily moved from one place to another, and as there is here no occafion for a confederate, But at the fame time it will not admit of fo great a variety of experiments.
CON_{2}

RECREATIONS. 205

construction of the communica: TIVE BELL.

LET there be made a box of copper in the form of part of a hollow covered cylinder, as A B (Pl. XVII. Fig. ı.) This box muft be placed upon the circle of wood C, that has at its center a pivot, on which is tờ be placed a touched needle D , three inches long, and thicker than the common needles; at each end it muft have a very fmall brafs knob, and near to one end of it there muft be placed a fmall bell; like that of a repeating watch; the bottom of this box muft be clofed with a gauze, that the needle may not be vifible.

On the infide of the magnetic table; Pl. XIV. place a double bar MO, of about five inches long, ftrongly impregnated, and fixed on an axis, under which is placed a double pulley of an inch diameter. To one part of this pulley fix a fmall cord, the other end being faftened to the fpring N : From

206 KATIONAL

From the other part of the pulley muft g a cord that paffes ovet another pulley at A, and from thence, through the leg H , and behind the partition W; in the fame maniner as in the experiment of the firen.

The motion of this cord being conftant ly the fame, and of very little extent, a lever may be fixed behind the partition, by which the magnetic bar may be readily moved from B to C .

This preparation being made, when you place the copper box or cylinder on the table, in fuch manner that the pivot which holds the needle is directly over that which holds the magnetic bar in the table *, if the lever behind the partition be thruft down, the bar will be moved from B to C , and will caufe the fame motion in the needle, and confequently make it ftrike againft the bell in the cylinder.

* There muft be a mark on the cylinder, by which you will be directed in placing it on the table.

RECRE•

RECREATIONS.

RECREATION XLVIII.

To tell, by the communicative bell, the card that a perfon has drawn from the pack. YOU are firf to obferve, that the founding of the bell fignifies yes, and its filence $n 0$.

Open the pack before the perfon, and dextroully prefent that card to him which you have agreed on with your confedetate. When the perfon has drawn that eard you interrogate the bell, after the following manner. Suppofe the card drawn to be the knave of fpades.

Queftions. Anfwers.

$\left.\begin{array}{l}\text { Do you know the perfon that } \\ \text { has drawn the card? }\end{array}\right\}$ Yes.

Is it a gentleman?	No.
Is it a lady?	Yes.
Do you know her?	Yes.
Is fhe handfome?	Yes.

Are

20̊ồ

Queftions. Anfwers:
Are you fure you know the card ? Yes:
Is it a diamond-a heart-a club? No.
Are you fure you are not miftaken? Yès.
Is it then a fpade ? Yes.
Is it the king-ten-nine of fades? No.
Is it the knave ?
Yes:

This manner of anfwering queftions may be applied to various intentions; as to naming the hour, or the number of perfons in company, \&c. The foregoing Recreation is fufficiently common; the following is fomething more extraordinary.

To tell, by the bell, at what number, from the top, any card of a pack iss that a per= fon Jball name.

To perform thîs Recreation you muit be provided with a piquet pack of cards, in which the feveral fuites are placed in
tie

RECREATIONS. 209

the following order, diamonds, fpades, hearts, and clubs: and the cards of every fuite in their natural rank, as ace, king, queen, knave, ten, \&c.

You fhuffle them, according to the manner prefcribed in p. 79. of the firft volume, and they will then be in the following order.

Vox. III. P A copy.
A copy of this arrangement your corifederate mult have. Therefore when the perfon has named the card he choofes, he who is behind the partition hearing what card it is, either by the other's naming. it, or your repeating it, by looking on his feheme will fee the number at which it is placed, and immediately ftrike that number on the bell.

This Recreation is the more extraordinary, as it may be repeated a fecond oz: third time, by your fhuffing the cards ina determinate order; nothing more being neceffary than for the confederate to have a fcheme of the fituation of the cards after each fhuffle.

RECREATIONS.
 215

RECREATION XLIX.

The marnetic balance.

YOU muft have a fmall balance, fuch as is commonly ufed for weighing money, as AB (Plate XVII. Fig. 2.) It fhould be very exact, and the fcales muft be iron or fteel, very thin, and gilt or laquered. This balance mult be fupported by a ftand fixed to the top of the magnetic table. The bottom of the fcales frould not be above half an inch diftant from the table.

You muft obferve, that they are to be placed over that part of the table where is the magnetic bar that is ufed for the firen and bell : fo that the centers of the two fcales are to be over the points O and M. Thefe fcales muft be ftrongly touched, that they may be the more eafily attracted by the magnetic bar.

W

$$
\mathrm{P}_{2} \quad \text { This }
$$

This preparation being made, you afk 2 perfon to lend you two pieces of money, fuppofe two guineas, and you place them in the fcales, which will remain in equilibrium, if the pieces be of equal weight. You then propofe to the perfon to augment the weight of either of them at pleafure, and when he has determined, your confederate behind the partition, by means of the lever, moves the bar toward one of the fcales, and it.immediately defcends. You then, if required, make the fame experiment with the other fcale.

To give your confederate notice which fcale is to be moved, nothing more is neceffary than to fay, is it this, or is it that fcale; you having previoufly agreed with him which fcale the words this or that fhall fignify.

. R E CRE-

RECREATIONS.

RECREATION L.

The fympathetic dials.

LET there be two dials conftructed of the fame form and fize. The movements of each confifting of a barrel A, and the four wheels A, B, C, D, with their pinions, and the fly F . The fame as in the ftriking part of a clock or dial, (See Pl. XVII. Fig. 3.)

The movements of each of them muft be enclofed between two plates of brafs G and H, Fig. 4. of about two inches and a half diameter, and diftant from each other about two-thirds of an inch. Let the axis of the wheel C pafs through the center of the upper plate G, which is to be covered with a dial plate, that ferves for ornament only. On the fame axis place a needle or index, as in a common dial.

214 R ATIONAL

Under the plate H, Fig. 3. and on the axis of the barrel, continued out beyond the plate, fix a wheel with a catch, by which the movement of each of the dials may be wound up.

To one of thefe dials let there be a catch or trigger on the outfide, by which it may be ftopped or put in motion with a touch of the finger. To the other dial fix the catch $\mathrm{L} N \mathrm{M}$, whofe axis is at N ; the end L takes the fly of the movement, and confequently when the other end is thruft back the wheels are at liberty to move, This catch is to be placed on the brafṣ wheel H , near the part I. It is to be of fteel, well folifhed and tcuched, with its fouth pole at M. Great care muft be taken to make this part move extremely free, that it may be eafily attracted by the bar in the magnetic table, on which it is to be placed. Each of thefe dials is to be enclofed in a cafe of thin copper or brafs QR.

On the infide of the magnetic table, Plate XIV. place the piece O P, compofed of four fteel bars ftrongly impregnated: they fhould be feven or eight inches long, half an inch wide, and one inch thick: they muft be bound clofe together by four brafs rings, of which that next P should be larger than the reft, and ftanding out beyond the bars, fhould have a hole thro'. it, by which it is to be fixed on a pivot att P. Thefe bars are to be drawn toward N , where they are to be ftopped by the fopring R. There muft alfo be a ftring, which, paffing over the pullies S and T, goes down the leg of the table; the bottom of which is to be a lever or treddle, under the ftep, by means of which the piece $O P$ may be moved by your foot.

You therefore place the fecond dial on the table, directly over that part where the extremity of the bars OP is; when you put your foot upon the lever at the

216 R ATIONAL
bottom of the table. Therefore if you then place your foot on that lever, the bars attracting the end M , of the catch, will fet the fly at liberty, and the wheels being put in motion, the index on the front of the dial will move with confiderable velocity; but when you take your foot off the iever, the catch will again take the fly, and ftop the movement.

Therefore having placed the fecond dial 'as above directed, you give the other dial, that had the end of the catch on the outfide, to any perfon, and tell him, that when he fhall ftop it, or put it in motion, the dial on the table will, by fympathy, do the fame, and by mounting the ftep you make it perform accordingly. You may alfo tell him that the dial on the table Thall either ftop or go, at his command: but this perhaps may deftroy the notion of the dials acting by fympathy.

RECREATIONS.

You may contrive to have fops or levers at diferent parts of the room, by carrying the cord under the floor : or in an adjacent room, to be moved by a confederate,

CONSTRUCTION OF THE MAGNETIC ROLLER.

PPROVIDE a board two feet and a half long, three inches and a half wide, and half an inch thick, (fee Plate XVII. Fig. 5.) and divide it into ten equal parts, in each of which defcribe a circle, and diwide its circumference likewife into ten equal parts. In each of the circles make a groove, and in each groove place a magnetic bar, whofe poles are to be difpofed as in the figure. Under each end of the board place a roller, on which it is to move in the magnetic table, Plate XIV.

To the end A of the roller (fee P1. XIV.) faften a cord, which is to pafs over a pulley at $B_{\text {? }}$ and go down the leg of the table:

218 RATIONAL.

so the end of this cord is to be faftened a weight, inclofed in a bag, which is to paf freely up and down the hole at B. To the other end B, of the roller, there muft likewife be faftened a cord, which, paffing over a pulley at A, going down the leg of the table, and through the ftep at the bottom, comes outbehind the partition W,

Againf the other fide of the partition place the table in page 220 ; and at the top of it fix a pulley, over which muft pafs a fring, with a weight at the end, and to the ftring muft be faftened an index; as in the experiment of the firen,

The table is formed in the following manner. You are firf to determine by trials, the fpace that the index faftened to the ftring paffes over, while each of the ten divifions of the roller comes to the, point S, in the magnetic table; and mark them down on the plan. Then divide it into five columns. In the ten divifions of

RECREATIONS. 219

firft column write the numbers $10,9,8$, $7,6,5,4,3,2,1$. In the ten divifions of the fecond column write the vowels A, E, I, O, \mathbb{U}, and the five confonants $\mathrm{D}, \mathrm{G}, \mathrm{L}, \mathrm{N}, \mathrm{R}$. In the divifions of the third column write the figures $1,2,3,43$ $5,6,7,8,9,0$. In the fourth column, in every other divifion, write the name of one of the five following cards, ace of fpades, eight of fpades, feven of fpades, nine of hearts, feven of hearts. In the fifth column write, after the fame manner, the names of five ftates, as England, Portugal, Spain, Pruffia, Auftria. You may place what other letters you pleafe in the fecond column, but they fhould be fuch as by their combinations will produce feveral words. The words in the fourth and fifth columns may likewife be changed for fuch as will anfwer to any other queftions you choofe,

> TABLE.

$\begin{gathered} \text { Divifions } \\ 10 \end{gathered}$	Letters A	$\underset{\text { Figures }}{\text { I }}$	$\begin{gathered} \text { Cards } \\ \text { ace fpades } \end{gathered}$	States
9	E	2		England
8	I.	3	8 fpades	
7	O	4		Portugal
6	U	5	7 fpades	
5	D	6		Spain
4	G	7	9 hearts	
3	L	8		Prufia
2	N	9	7 hearts	
1	R	0		Auftria

Now it follows from what has been faid, that when the perfon behind the partition fixes the index in the cord againft any one of thefe divifions, the part of the roller which correfponds to that divifion will be brought oppofite to the point S, in the magnetic table, and confequently the touched needles in the pieces hereafter defcribed, will place themfelves in the fame direction with the bar in that part of the roller.

THE

7.

1

${ }^{\text {Dontreat by }}$ Google

RECREATIONS.

RECREATION LI.

The magician's box.

FIRST conftruct the bafe AB, (Plate XVIII. Fig. i.) of fix inches long, four wide, and one deep. Let it be hollow, and covered with a piece Q, that flides in in a groove. In the middle of the top piece make a hole, either fquare or round, of about half an inch wide.

On this bafis place four planes of glafs F, Fig. 2. joined together in the form of 2 truncated pyramid, and lined with gauze, or thin paper. At its bottom IL, itt fhould be two inches and a half fquare, but at top only one inch and a half. At the opening place a convex glafs V, of five inches focus, that is, equal to the height of the machine. Let it be fixed to the bafe A B.

On the infide of the bafe, and at two inches diftance from one of its Chorteft fides, fix a pivot, on which is to be placed the
the circle of pafteboard OP, Fig: 3: of four inches diameter, in which muft be fixed the touched needle QR. The pafteboard circle muft be divided into ten equal parts, as in the figure; which parts are to correfpond to the divifions in the foregoing table. In the five divifions 1, $3,5,7,9$, are to be drawn the cards there expreffed.

On a fecond circle of pafteboard, that has the fame divifions, write in thofe marked 2, $4,6,8,10$, the five names of different fates mentioned in the foregoing table.

As each circle muft be previoully placed on the bafe, and changed for every different recreation, it will be proper to have two boxes, as it would be impolitic to change the circles before the fpectators. It would be ftill much better if the box could be placed in a cheft or cabinet, that was fixed againft a partition, behind which

RECREATIONS. 223

which a confederate is placed; for then, after performing one recreation, the box might be placed in the cabinet, and the confederate, by a private opening in the partition, might take out the circle, and infert another.

It will be eafy to conceive, from what has been already faid, that when the machine is placed on the magnetic table, at the part S, fo that the pivot on which the circle turns is exactly over the point S, the bar in the part of the roller then there, will put the reedle in a fimilar direction, and confequently by looking into the machine, the fpectator will fee the card, letter, or word, that is oppofite the index in the table of columns.

Aperi

224 RATIONAL

A perfon is to name the fate in which is the city whofe name is on the cards that have been dealt to anothers

On thirty cards write the names of the five following cities; London, Lifbon, Madrid, Berlin, Vienna. Then fhuffle and deal them after the manner explained in page 79. of the firft volume.

Then tell the fecond perfon to look into the box, and read the name of the ftate in which is the city whofe name is on the cards in the firft perfon's hand.

- The fame is to be done for the four other parties.

To perform this Recreation, nothing' more is neceffary than to have a circle with the names of the five fates; and that the confederate be inftructed in the crder that each name is to be brought forward to. the eye of the fpectator.

RECREATIONS. 225

In recreations of this kind it will be proper to have a hole in the partition, by which the confederate will know when to move the circle, and keep it fteady till he who performs the experiment has covered the eye-glafs of the box.

RECREATION LII.

The myyfical dial.

PROVIDE a board four inches fquare, and let it be fupported at the four corners by feet about one quarter of an inch high, as AB (Plate XVIII. Fig. 4.) On this board draw two concentric circles, and divide them into ten equal parts, in nine of which write one of the numbers from 1 to 9 , and in the tenth an 0 . Thefe numbers muft be placed in the fame manner as in the figure, and the line A B muft divide the divifions marked 1 and 6 , into two equal parts. At the center of this dial place a needle of a convenient fize.
VoL. III.

226 R ATIONA
Itis evident from the conftruction of this dial, that when the perfon behind the partition places the index of his table againft any number in the third column, the needle of this dial, when it is placed over the roller in the magnetic-table, will point to the fame number.

To gow, by the foregoing dial, the numbers that two perfons have chofe, their fum, or their product.

You muft here have the fmall bag defcribed in p. 140: in the firft divifion of which put the numbers from 1 to IO_{2} and in three other divifions any numbers you pleafe, fuppofe 3,7 , and 8 ; that is, all the tickets in each of thofe three divifions muft have the fame number. You then offer two different divifions of the bag to two perfons, and they each draw one number, fuppofe 5 and 7 , you having previoufly agreed with your confederate what the numbers are to be.

RECREATIONS. 227

You then afk thèm whether the index fhall point to their numbers fucceffively, their amount, or their product when multiplied together.

If the numbers are to appear fingly, the confederate firft directs the index of his table to the number 5 , which you are to allow him a fufficient time to do. You then place the index of the dial, and turning it about it will ftop at that number. You take off the index while your confederate moves the flider, and placing it on again it will then ftop at 7 .

If the amount of the two numbers be required, the confederate directs his index firft to 1 and then to 2 , which make 12 . If the product be required, he directs the needle, in like manner, firft to 3 and then to 5 , which make 35 .

You mut obferve to take the needle off the pivot immediately after it ftops, beQ2 fore

228 RATIONAL.
fore the roller begins to move again: and as the needle will place itfelf directly in the pofition of the bar underneath, you. muft turn it about as foon as you have placed it on the pivot. Attention fhould be had to this obfervation in all the experiments with the magnetic needle.

RECREATION LIII.

The magical game of all-fours.

Tperform this Recreation you muft have a pafteboard circle, on which there are twelve divifions, on fix of which cards are to be painted, and to which fix divifions of the roller muft be adapted. A pack of cardsare to be previoully rangedand fhuffled, after the manner defcribed in the firft volume, p.78. and when they are dealt, the hands are to be as follows.

Eldeft

RECREATIONS.

Eldeft
King
Ten
Ace clubs
Ace diamonds
$\underset{\text { Knave }}{\text { King }}\}$ hearts

Youngeft
$\left.\begin{array}{l}\text { Ace } \\ \text { Queen } \\ \text { Nine }\end{array}\right\}$ fpades $\left.\begin{array}{l}\text { Ace } \\ \text { Queen } \\ \text { Eight }\end{array}\right\}$ hearts Turn-up card, knave of fpades.

The eldeft takes up his cards. Thofe dealt for the youngeft lie on the table. Now the datural way of playing the above cards would be as follows: firl, the eldeft hand would lead one of his aces, which the youngeft would win with his nine of trumps; and then play his ace and queen of hearts, the latter of which the eldeft would win with his king : he would next lead his other ace, to which the youngeft would play his eight of hearts. The eldeft muft then lead from his king and ten of trumps, both which the youngeft muft take with his ace and queen, and confequently have higheft, loweft, and game, Q3 which,

230: RATIONATAA
which, with the knave turned up, will make him all-fours.

Therefore when the eldeft plays, you fay alcud to another perfon, the gentleman plays the ace of clubs, for example, look in the box and fee what card I muft play ; when your confederate will directly bring the nine of trumps on the circle to view. When it is your turn to play, you have no occafion to fay any thing, but only defire the perfon to look in the box and fee what card is played, your confederate having directions what to do. Thus you go on till the eldeft has played all his cards. But you muft obferve, each time the circle is to be moved to prevent the perfon from immediately looking into the box, by fome amufing difcourfe; or it might be better to ftand by the box yourfelf, in order to cover and uncover it each time the perfon is to look in, that the circle may have time to fettle.

RECRE:

RECREATHON8. 23:

RECREATION LIV.

The intelligent fy.

A^{T}T the center of a box about fix inches fquare and one inch deep (Pl. XVIII. Fig. 5.) place a pivot. Have a touched needle L , three inches and a half long, and at the end of it that is touched fix a fly made of enamel ; the other end of the needle muft be fomething heavier, to keep it in equilibrium. This needle is to be placed on the pivot.

On a piece of fquare pafteboard that will juft go into the box, draw a circle, $A B C D$, three inches and a half diameter; and another at a fmall diftance, concentric with the former. The part within the laft circle muft be cut out. This pafteboard circle is to be placed about half an inch from the bottom of the box, and divided into ten equal parts, in which are to be
 wrote

232 R'ATINAE
wrote the letters A, E, I, O, U, D, G, L N, R; as in the figure.

Place a glars about half an inch above the circle, and cover it with a circle of paper C, large enough to hide the needle; and leave only the fly vifible; on this paper you may paint fome allegoric figures, that its ufe may not be fufpected. You muft next write on 24 cards the following queftions. Thefe cards are to be packed and fhuffled, according to the method explained in the firft volume, p.78. that they may be in the order the queftions are here placed.
QUESTIONS.

1, Which is the land of liberty? 2.Which is the firft city in the world? 3 . Whom do many men defpife, though they have not half his merit ? 4. Who is the pooreft man in the world? 5 . Who is the meaneft of all mankind? 6. For what do all young women long? 7 . Who, by ftation, is the moft
XVII
$-_222$

ige Sousp.

REGREATIONS.

moft miferable of all beings. 8. By what does a man difcover his weaknefs? 9. What would every married woman do if the could? 10: In what does a man fhow his pride and folly? 1 I . What makes a woman cry more than the lofs of her hufband? 12. How does a man talk who has nothing to fay? 13. What moft refembles a fine lady? 14. What frequently reminds us of a great lofs, without giving difgult? 15 . What makes a young woman in love with an old man? 16. What does the poet want to cover his empty fkull? 17. What fhould a man never take from the woman he loves? 88 . What muft that man be who would gain the efteem of all ? 19. Who is he that feeks a man's company when his money and friends are all gone? 20. What gains the good will of the phyfician, the lawyer, and the harlot? 2 1. What do good men revere and knaves abufe? 22. What does a man depend on when he trufts to his friends for fupport ?
23. What can he be fure of, who leaves his affairs to other? 24. What makes as great a difference almof, if not altogether, be-. tween this man and that, as between that and a brute?

After you have ranged the cards in the manner before mentioned, you place them on the table, and afk any perfon which of them, in the order they then ftand, fhall contain the queftion to which the fly fhall give him the anfwer. . If he fay, for example, the 20th, your confederate, who has the following copy of the anfwers, will make the needle, at the end of which the fly is, fucceffively point to the letters that compofe that word: then counting the cards over till you come to the 20th, you will find that word anfwer the queftion.

> ANS W ERS,

1. Englañ. 2. London. 3. A dog. 4. A niggard. 5. A liar. 6. A ring.
2. A

RECREATION8. 235:

7. A nun. 8. Anger. 9. Rule. 10. A: duel. 11. An onion. 12. Loud, 13. An. angel. 14. A dial. 15. Gold. 16. A laurel. 17: A denial. 18. Generous. 19. A dunn. 20. A guinea, 21. Relị-gion. 22. A reed. 23. Ruin. 24. Learning.

Many other recreations may be performed by this intelligent fly by numbers, cards, \&c. fimilar to thofe we have already explained on other occafions, and which, to avoid the appearance of repetition, we fhall not here defcribe.

RECRE=

RECREATION LV.

The multifarious verfe.

1HE eight words that compofe this Latin verfe,

Tot funt tibi dotes quot califidera virgo*,
being privately placed in any one of the different combinations, of which they are fufceptible, and which are 40,320 in. number, to tell the order in which they: are placed.

Provide a box that fhuts with hinges, and is eight inches long, three wide, and half an inch deep (Plate XIX. Fig. 1.) Have eight pieces of wood about onethird of an inch thick, two inches long, and one and a half wide, which will therefore, when placed clofe together, exactly fill

* Thy virtues, virgin, are as numerous as the fars of heaven.
the

RECREATIONS. 237

the box. In each of thefe pieces or tablets place a magnetic bar, with their poles as is expreffed in the figure. The bars being covered over, write on each of the tablets, in the order they then fand, one of the words of the foregoing Latin verfe.

On a very thin board of the fame dimenfion with the box, Fig. 2, draw the eight circles, A, B, C, D, E, F, G, H, whofe centers fhould be exactly over thofe of the eight tablets in the box, when the board is placed upon it. Divide each of thofe circles into eight parts, as in the figure, and in each of thofe divifione write one of the words of the Latin verfe, and in the precife order expreffed in the plate, fo that when the board is placed over the box, the eight touched needles placed at the center of the circles may be regulated by the poles of the bars in the box, and conSequently the word that the needle points to in the circle be the fame with that infcribed on the tablet. Cover the board with'a
glafs

$23^{8} \quad$ RATIONAL

glafs to prevent the needles from rifing off their pivots, as is done in the fea-compafs:

Over the board place four plates of glafs, I, L, M, N, Fig. 3, which will give the machine the figure of a truncated py^{4} ramid, of eight inches high. Cover it with a glafs, or rather a board in which are placed two lenfes of eight inches focus, and diftant from each other about half an inch. Line the four plates of glafs that compofe the fides with very thin paper, that will admit the light, and at the fame time prevent the company from feeing the circles on the board.

Thefe preparations being made, you give the box to any one, and tell him to place the tablets on which the words are wrote, privately, in what pofition he thinks proper, then to clofe the box, and if he pleafe, to wrap it up in paper, feal it, and give it you. Then placing the board with the pyramid upon it, you immedlately tell him

$$
\begin{aligned}
& \cdots \\
& \text { Digitized by GOOgle }
\end{aligned}
$$

RECREATIONS. 239

him the order in which the tablets are placed, by reading the words to which the needles on the circles point.

This Recreation, which appears to have been invented by M. Guyot, is of the fame nature with that of the box of numbers, that has been frequently exhibited, but much more entertaining. For here there is not only a vaft number of combinations to be formed, but the words at the fame time conftantly preferve ohe meaning. If the firf inventors of this fort of recreation had made ufe of words in this manner, inftead of numbers, the inveftigation would have been attended with much more difficulty.

RECRE-

RECREATION LVI.

The communicative mirror.

1'ET there be made a box AB, (Plate XX. Fig. 1.) the top of which draws off at the end A. Let it be on the infide nine inches long, fix wide, and two-thirds of an inch deep. At the bottom of this box, and at three inches diftance from the end A, fix a pivot, on which is to be placed the circle of pafteboard M, Fig. 2. that contains a touched needle. Divide this circle into four equal parts, in three of which paint three cards, in the pofition expreffed in the figure.

In the top of the box make a hole an inch and half in diameter, over which place the pedeftal CD, compofed of four plates of glafs, covered on the infide with very thin paper.

RECREATIONS.

On the top of the pedeftal place the tube EF, about fix inches long and one and a half in diameter. In this tube, at M , is to be fixed an inclined mirror, by which the part of the pafteboard circle under the hole at L, may be feen by the eye at G. At the end F of the tube place an eyeglafs, whofe focus is equal to the diffance GM; and at the end E; any glafs your pleafe. At the end B of the box, place the mirror T V, which ferves to make the fpectator think it is in that he fees the card on the pafteboard.

In the box ABED, Fig. 3. that fhuts with hinges, and is of the fame dimenfion with the infide of the other box, are to be placed fucceffively the three tablets $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, in one determinate pofition. In each of thefe tablets muft be fixed a magnetic bar, in the manner expreffed in the figure, and on each of them is to be pafted one of the fame cards with thofe on the pafteboard Vol. III. R circle,

242 RATIONAGX
circle, , One of thefe tablets, as, for example, that marked Z, being placed in the box, in the manner expreffed in the third figure, the needle on the circle will place itfelf in a correfponding pofition, and the fimilar card on the circle will come under the pedeftal. You therefore prefent the box, Fig. 3. and the three tablets, to a perfon, defiring him to place any one of thery he thinks praper, in the box, privately then toconceal the others, and after he has, clofed the box, to return it you. . Then placing the firft box with the pedeftald tube, and mirror over the other, you direct him to look in the feeming per, fpective-glafs, when he will fee the fi-: gure of the card he placed in the box, and it will appear to him to be in the mirror CV.

You may have a fourth tablet, that contains a bar, but on which there is nothing painted. This tablet you may place firft

RECREATIONS.

in the box, and let the party fee that when there is' no card in the box he cannot fee any in the perfpective.

RECREATION LVII.

The box of dice by reflection.

LET there a fmall box of wood, ABCD,' (Plate XX. Fig. 4.) ten inches long, two wide, and one and a half high. At the two ends of this box fix the two hollow cubes I, L, one inch and a half fquare, in which are to be placed two dice exactly of the fame dimenfion.

The ends A C and B D of the box are to have diders that draw up, in the. manner expreffed by Fig. 5. There muft be likewife at each end a fmall pannel M , that may be raifed or depreffed one-tenth of an inch, by which

R 2 a fmall

244 R.ATIONA.L
a fmall hole at N may be covered or uncovered; and through this hole you are to fee into the box.

The top and two longeft, fides of thebox are to be of glafs, lined with a thin paper. Within the box are to be placed two mirrors OP and QR, at an angle of forty-five degrees, by which, when you look through the holes at the two ends of the box, you will eafily fee the bottoms of the two cubes I, L, that are placed on it.

Divide the bottoms of the cubes juft mentioned into four equal parts, by diagonals drawn from the oppofite angles, as in Fig. 8. and again divide that fide next the middle of the box into fix equal parts, which are to correfpond to the fix points that are on a die.

Under each of the cubes place a fmall brafs fland AB, Fig. 6. which is to be -dif-

RECREATIONS.

 245difpofed as in Fig. 7. On the ftand there muft be a pivot, directly under the cen-ter of the cube, and it mult hold two needles, one of brafs and the other of fteel, and touched. Thefe needles are to be placed at right angles to each other, as in the figure.

Divide each face of the die into four equal parts, by diagonals from the oppofite angles, and then divide each fide into fix equal parts, and in each fide of the die, oppofite to one of thofe parts, each different from the other, place a magnetic bar one inch and a quarter long, twotenths of an inch wide, and one-tenth thick. All the divifions on thefe dice muft be very exact: cover them with double papers; and write on each fide of them the points it is to exprefs, when its oppofite fide is next the touched needle : they are then to be placed in the two hollow cubes, which are to be covered.
R_{3} This

246 R A T I O N A L, \&c.

This machine being conftructed with care, according to the foregoing directions, you prefent the two dice to any perfon, and defire him to place them privately in the two cubes, in what pofition he pleafe, and put on their covers. Then looking through the two holes, you immediately tell him, by the direction of the needles to the under fides of the cubes, the exact number of points they compore.

1

THE

THE

CONTENTS.

ELECTRICITY.

DEFINITIONS

Page 1
APHORISMS
3
What bodies are, and what are not conductors of electricity, aph. 1 and 2.Pofitive and negative electricity, aph. 3 to 7.-Excited and communicated electricity, aph. 8 to 11.-Electric explofion, aph. 12 and 1 3.-Electricity and lightning the fame, aph. 16.

ELETRICAL APPARATUS.

Conftruction of the electric machine p. 8 Obfervations on the manner of ufing it 16 R 4 An

148. COTN ETNS:

An electric machine for common purpofes
p. 21 (note)

Electrical jars 23
Method of coating them , 24
Electrometers , 25
The electrical battery . 32
Conflruction of a fulmineous conductor 35 Glafs tubes, cylinders, \&c. and the manner of uling them 38
Method of concealing the electric ma- chine 40
Account of the tourmalin 43
ELECTRICAL RECREATIONS.

Divided into fuch as are performed in the light, and fuch as require a dark chamber
p. 46

RECREATION I. p. 46
The animated feather.
A feather being brought near an excited tube is firft attracted by it and then repelled, and the tube cannot be brought clofe

CONTENTS:

clofe do the feather, till it has touched fome other body.

REGREATION II. :p:48

The felf-raifing pyramid.
A large bundle of threads being fufpended from the eleftric branch, (Plate IV. Fig. 3.) will rife up in form of a pyramid, and continue fo as long as the wheel is turned, but when that ceafes the threads will refume their firf pofition.

$$
\text { REGREATION III. p. } 49
$$

The magical dance.
Three bells are fufpended from the electric branch, and between them hang two brafs knobs. The bells being electrified will attract the clappers, and be fruck by them, and the ringing will continue as long as the machine is in motion. This is the mufic for the dance. A plate is then fufpended from the branch,
.branch, and bo a metal ftand, placed under it, ata put the figures of men, . which being attracted by the plate will be in continual motion. This Recreation may be fufpended or renewed at pleafure.

$$
\text { RECREATION IV. p. } 52
$$

The artificial Jpider.

The body of this fpider is of cork, and its legs of linen thread. When it is held, by a fine line of filk, between the electric branch and an excited fick of wax, it will appear to be animated, continually jumping from one to the other.

RECREATION $\quad \mathbf{V}_{:} \quad$ p. 53

The marvellous fountain.
A veffel of water, in which a fyphon is placed, being fufpended from the branch, as foon as it is eleCtrified the water will begin to flow, and when the electrifica-
tion

CONTENTS. が

tion is flrong feveral Atreams will iflue, in form of a cone. This experiment may be diverfified by ufing a fountain made with condenfed air.

RECREATON VI. P. 54

The magic piciture.

This picture or print muft have a frame and glafs. The border of the print is cut off, all round : the upper and under part of the middle of the glafs is covered with tin-foil, that communicates by the bottom of the frame : over this tin-foil the print is pafted. When the picture is a portrait a crown is placed on its head, which a frranger attempting to take off, at the fame time he holds the frame by the bottom, receives a fmart fhock, and fails in the attempt.

RECRE-

25^{2} CONTENTS.

RECREATION VII.
 p. 56

The Tantalian cup.
A metal cup is placed on a ftool of baked wood, and a chain from the branch is fixed to the cup. A perfon endeavouring to tafte the liquor in the cup, receives a fhock. The machine being ftopped, another perfon drinks out of the cup with eafe : the machine being again put in motion, the firft perfon again attempts to tafte the liquor, and receives a fecond fhock.

RECREATION VIII. p. $5^{\boldsymbol{8}}$

The circular chimes.

A round board is fixed to a perpendicular axie, and feveral glafs radii iffue from the board, and to the end of each of them is fixed a brafs thimble. Two wires that are joined to the hooks of the electric table, (Pl. IV.) and which are dif-

C O N T E N T S. . $\quad 253$

differently electrified, put the wheel in motion, by being properly applied to the thimbles, and the motion increafes till it goes fifteen rounds in a minute. Two femicircular ftan ls, that hold feveral bells, being then brought near the wheel, they are alternately and inceffantly ftruck by a radius fixed to the upper part of the axis. This wheel is fometimes ufed as a jack for roafting meat
p. 60 (note)

RECREATION IX. p.62

The Jelf-moving wheel.

This wheel is conftructed on the fame principle as the foregoing. A circular plate of glafs, gilt on both fides, is fixed to a perpendicular axis: on the edge of this wheel are fixed two bullets, one communicating with the upper furface, and the other with the under furface ; twelve fmall pillars of glafs, with a thimble on the top of each of them,
$254 \quad$ COTNTNTS.
them, 'are fixed in a circular ftand, *) round the wheel. When this wheel is well charged, the bullets on its edge being differently electrified, attract and repel the thimbles alternately, and thereby give the wheel a motion that increafes continually, till it goes more than 20 turns in a minute, and the motion will continue half an hour. The celerity of this wheel may be increaffed by an additional number of bullets.

$$
\therefore \text { RECREATION X. p. } 65
$$

> The magician's chace.

A wire is placed perpendicular to the branch, and on the top of it turn feveral horizontal wires, the points of which are bent in oppofite directions, and on them are fixed the figures of men, horfes, hounds, \&c. When thefe wires are electrified they will turn fwiftly round; and the figures will feem to purfue each other. This Recreation may - be improved by another fet of wires, placed

CONTENTS. 255
placed over the former; or by giving the figures a progreffive, as well as a circular motion
p. 67

RECREATION XI. p. 67

The planetarium.

Six concentric hoops of metal are fufpended from the branch; under and near to them is placed a metal plate, on which are put glafs bnbbles, between the hoops; thefe bubbles correfpond to the planets, the hoops to their orbits, and a ball hung over the center of the hoops reprefents the fun. When the hoops are electrified the balls will move round them, and the motion will continue as long as the operator thinks fit.

$$
\text { RECREATION` XIL. p. } 69
$$

The incendiaries.
A perfon ftanding on a cake of wax holds a chain that is connected with the branch, and putting his finger into a difh

256 CONTENTS.

difh containing fpirit of wine, it will be immediately in a blaze; and if a wick that communicates with the fpirit be laid to a train of gunpowder, it may blow up a magazine, or fet fire to a city. This experiment may be diverfified by making the electricity pafs through feveral perfons that touch each other.

RECREATION XIII. p. 72

'The inconceivable 乃ock.

A perfon holding a chain that is joined to one of the hooks of the electric table, attempts to fix a wire on the other hook, when he inftantly refeives a fhock through the body, without knowing from whence it proceeds. This Recreation may be diverfified by concealing the chain under a carpet on which a perfon treads, and by laying a wire that communicates with the other book, in fuch manner that he may ac-ciden-

CONTENTS. $\quad 257$

cidentally take hold of it. Methods of communicating the thock to a great number of perfons at the fame time
p. 73

RECREATION XIV. p.75

Magical explofions.
Gunpowder is made up in the form of a fmall cartridge, in each end of which is put a blunt wire; the ends of there wires within the cartridge are about half an inch diftant. Two chains, that communicate with the two hooks in the electric table, being joined to the external ends of the wires, the electric fire will pafs through the cartridge, with an inftant explofion. By a fimilar method brafs or iron wire may be melted.

$$
\text { RECREATION XV. p } 78
$$

Prifmatic colours.

A tin plate is placed between two wires that communicate with the two hooks Vol. III.
of

of the electric table, and after many explofions three diftinct rings appear, each of which contains all the colours of the prifm or rainbow. 'This experiment corroborates the Newtonian doctrine of colours
p. 7^{8} (note)

RECREATION XVI. p. 81

The artificial earthquake.
An edifice, " compofed of reveral loofe pieces, is placed on a board in' the middle of a large bafon of water. A wire that communicates with the hooks in the table, being laid over the board and the furface of the water, they become greatly agitated by the explofion, and the edifice is laid in ruins.

RECREATION XVIL. . $\mathbf{P} 82$

The electrical kite.

This kite confifts of a large thin filk handE kerchief, whofe corners are faftened to the

CONTENTS. 359

the ends of two flips of cedar, and to the top of the upright piece is fixed a pointed wire, about a foot long: the other parts are the fame as in a common kite. To the end of the twine next the hand a filk ribband is tied, and where the twine and ribband join a key is hung. This kite is raifed when thunder is approaching. The electricity is conducted from the wire of the kite to the twine, and from that to the key, by which a phial may be charged and all the common experiments in electricity performed. Account of fome very extraordinary phenomena that - were produced by an electric kite in the fouth of France p. 83

Defcription of an apparatus for drawing
the electric fire from the clouds with
out danger

p. 89

$$
\mathbf{S}_{2}: \text { RE }
$$

RECREATIONS IN THE DARK CHAMBER

RECREATION XVIII.
p. 9.1

The miraculous luminaries.
Method of making the phofphorus proper for this Recreation. The figure of the moon and ftars being drawn on a board, a quantity of the phofphorus is fixed over them, and a number of phials are difcharged on the phofphorus, by which the figures are ftrongly illuminated. The board is then placed againft the cieling, and the luminaries. appear as fhining in the zenith.

RECREATION XIX. p. 94

> The globular fires.

Thefe fires are produced by the globe and: cufhion only, without the conductor: The globe being ftrongly excited parts. of circles offire will appear on both fides

CONTENTS. ${ }_{26}$

the rubber, and fomerimes completely furround the globe. If a finger be brought near the globe, when it is in that ftate, there will frequently be a complete arch of fire from the finger to the rubber, though it be almoft on the oppofite fide of the globe. If the air be exhaufted from the globe, the electricity will all appear on the infide p. 96

RECREATION XX. p. 96

The luminous Jbovier.

On a metal plate fet under the branch is put a quantity of brafs duft, and over it another plate is fufpended from the branch, and when it is ftrongly excited the duft will be attracted and repelled with great rapidity, and exhibit the appearance of a luminous fhower. A fimilar phenomenon by a fponge filled with water p. 97

S 3 REGRE-

262 CONTENTS.

RECREATION XXXI. p. 97

The illuminated vacuum.
A wire is cemented in the top of a large exhaufted receiver, and the upper end of the wire is brought to the conductor, when one or more ftreams of light, that reach the whole length of the receiver, appear in a beautiful manner. The appearance of this light remarkably different, according as the veffel is electrified pofitively or negatively
p. 98

RECREATION XXII. p. 100

The luminous cylinder.

A brafs plate is fixed at the bottom of an exhautted receiver, and another plate is contrived to let down, near the former. The electricity paffes from one to the other of thefe plates, the whole length of the veffel, and appears as a corrufcation of a bright filver hue.

RECRE-

CONTENTS. $\quad 26_{3}$

RECREATION XXIII. p. Ior

The magical conftellations.
On a board are marked a number of fpots, at different diftances, fo as to correfpond with the ftars in two or more contiguous conftellations. On the fides of each fpot are made two holes, in which wires are placed, that nearly meet over the fpot. The other ends of the wires communicate with the branch, and when that is electrified all the ftars appear luminous, and fhine with unfading luftre as long as the machine is in motion.

RECREATION XXIV. p. 103
The luminous characters.
Several rows of tin-foil, that all commumunicate, are placed on a board, at equal diftances (Plate III. Fig. I.) From S_{4} thefe

264 CONTENTS thefe rows the characters are cut out. .. One end of the tin-foil being brought to the conductor the electric fire would pafs over the whole imperceptibly, but being ftopped by the breaks in the lines it jumps from one to the other, and all the characters become luminous, ând remain fo as long as the operator thinks fit.

RECREATION XXV: p. 105
Prijmatic illuminations.
An exhaufted cylinder is fixed to a lath, and is rubbed by the hand as it turns, when a body of light, variegated with all the colours of a prifm, appears in the glafs, and thefe colours are continually changing. When a little air is let into the cylinder the colours. are more vivid: when more air is admitted there are continual corrufcations, with the appearance of a cafcade of fire, trees; mofs, \&c.

REGRE-

CONTENTS. 265

RECREATION XXVI. p. w 08

The aurora borealis.

A Torricellian vacuum is made in a glafs tube, one end of which is applied to the conductor, and the other end held in the hand; the whole tube then appears to be filled with light, which continues for a confiderable time: after this light difappears, if the tube be drawn through the hand, a very intenfe light is feen, and reaches, without interruption, from one hand to the other.

RECREATION XXVII. p. 110

The circulating lamps.

- To the upper axis of the felf movingwheel are fixed feveral radii, and from the end of each of them hangs a lamp, filled with fpirit, and that of each lamp
is tinged with a different colour. The wheel having acquired a confiderable velocity is placed under the branch, from which hange a chain, that as the wheel turns round dips into the fpirit of each lamp and fets it on fire. Thefe lamps being all of different colours, and revolving in a quick fucceffion, produce a pleafing effect.

MAGNETISM.

DEFINITIONS page :II 3
APHORISMS 115

Nature of the magnetic attraction, aph. I to 6.-Properties of the magnetic needle, aph. 8 to 10.-Strength of the natural magnets, aph. 10 and 11.-Magnetic quality of iron, aph. 13 and 14.Methods of communicating and deftroying magnetifm, aph. 15 to 17.
Method of making artificial magnets 122
The magnetic perfective-glafs 128
The magnetic wand 131
RECRE-

CONTENTS. 267

RECREATION XXVIII. p. ${ }^{3} 3$

The communicative crown.
A large fewing-needle, that is ftrongly touched, is concealed in a crown piece. You defire a perfon tolend you a piece of the fame fort, which you change for the other, and giving that to the perfon, you difcover whether it be enclofed in a fnuff-box, or not, by holding the magnetic perfpective over the box.

RECREATION XXIX. p. 135
The magnetic table.
A magnet is concealed under a table, and is moveable by a pin, at one end of it. Small nails are laid on that part of the table where the magnet then is, and they are attracted by a key you hold over them. You change the pofition of the magnet, by the pin, and give the key to any one, when it will 7 not

268 CONTENTS.

 not attract the nails. You change the pofition of the magnet a fecond time, and giving the key to another perfon, it will immediately attract the nails.
RECREATION XXX. p. ${ }^{3}{ }^{6}$

> The myferious watch.

You afk any one to lend you his watch, and placing it over that part of the table mentioned in the laft Recreation, where the magnet is, it will prefently fop. You change the pofition of the magnet, and defire the perfon to lay his watch in the fame place, when it will not fop. You move the magnet a fecond time, and giving the watch to another perfon, it will ftop as before.

RECREATION XXXI
 p. I_{37}.

The bouquets.

A fmall box of thin wood (PI VII. Fig. I.) is contrived to contain two artificial flowers ;

CONTENTS. 269

flowers; the principal ftalk of each of them is ftrongly touched, but in different directions. By holding the magnetic perfpective over the box you difcover which of the flowers is concealed in it.

RECREATION XXXII. p. 139

The magnetic dial.
A magnetic needte is concealed in a hollow circle, (Plate VII. Fig. 2.) and oppofite its north end a pin is fixed in the border of the circle; over the needle is placed a dial, that moves freely in the - hollow circle, and on which are numbers, \&c. A perfon draws a ticket from a bag, in which there are feveral divifions, and then turning the hand of the dial about it ftops at the number he has drawn' y you having previoully fet the north end of the magnet, by the pin in the circle, to that number on the dial.

RECRE-

270 CONTENTS.

:RECREATION XXXIII. p. 143

The magnetical cards.
This Recreation is fimilar to the laft, but here inftead of the numbers of the hours, one of each of the four fuits of the cards are drawn, and the eight names of the cards of piquet are wrote (Plate VII. Fig. 4.) You offer a piquet pack to a perfon that he may draw a card, taking care that he draws the long card, as is explained in the firft volume. He then turns the needle round, and it fops at the card he drew; you having previounly placed the magnet againft that card. This Recreation may be diverffied by having two deedles, and letting two perfons draw each a diffexent long card.

```
|
```

R E-

CONTENTS. $2 \mathrm{~K}^{3}$

RECREATION XXXIV. P:187

The dexterous painter.

There are two fmall boxes and four fmall boards, (Plate VIII. Fig. 1.) on which different fubjects are painted, and in each of which a magnet is, concealed. There is likewife a fmall circle of pafteboard, Fig.2, on which are drawn the fame fubjects as on the boards : this circle turns on a pivot, and contains a magnet. A perfon places any one of the four boards in one of the boxes privately, and you place the other box, with the pafteboard circle, over it ; when the magnet in the board will turn the circle, till that part of it which is under an opening made in the top of the box, prefent the fame pitture as that on the board, and which is fuppofed to be drawn by a little painter concealed in the box.

RECRE-

RECREATION XXXV. p. 15°

> The cylindrical oracle.

In the fide of a hollow cylinder (Plate IX. Fig. 1.) is concealed a magnetic bar; on its cover is a circle, with numbers, and at the center of that circle is a pivot, on which a magnetic needle turns. A perfon draws a queftion out of one of the divifions of a bag, and and turning the needle at the top of the cylinder it ftops at the number with which the anfwer contained in the cylinder is marked; you having placed that number over the magnetic bar when you put the cover on the cylinder. Example of the different anfwers that may be given to the fame queftion, p. 152.

RECRE-

CONTENTS. 273

RECREATION XXXVI. p. 153

The myftical dial.
There is a fmall box, (Plate IX. Fig. 2.) and four boards, Fig. 3 ; in each of thefe boards a magnet is placed, in a different pofition, and on it a different number is wrote. A perfon is to place one of the boards in the box, and to choofe whether the needle of the dial, Fig. 4, when placed over the box, thall point to the whole, the half, the double, or triple of the number on the board; and you then place the dial on the box in a determinate pofition.

RECREATION XXXVII. p. ${ }^{1} 56$

T The enchanted ewer.

A hollow cone is placed in a ewer, (Plate X. Fig. 1.) at the bottom of which is a

Vol. III.
T
hole :

274. CONTENTS.

hole: under that hole a convex mirror, and between the hole and the mirror is a pafteboard circle, Fig. ${ }_{3}$, that turns on a pivot. The ewer is placed on a fand, Fig. 1 , in which is a drawer. The pafteboard circle is divided into four parts, in three of which are painted the fame figures as on three of the boards, Fig. 5 , and the fourth is left blank: this pafteboard circle contains a magnetic needle, and the four boards have each a. concealed magnet; therefore when one of them is put in the drawer under the ewer, the circle will correfpond to the pofition of that magnet, and a perfon looking into the top of the ewer will fee his own face furrounded with the head drefs of the figure in. the drawer.

RECRE-

CONTENTS. 275

RECREATION XXXVIII. p. 59

The magician's circles.

There are two hollow fquares that are connected by a crofs piece which is alfo hollow (Plate X. Fig. 5.) On each of the fquares is a dial, with a moveable hand, and within the fquares and crofs piece is a movement, fo contrived that when the hand of one of the dials is moved, that of the other fhall place itfelf in a determinate pofition. On thefe dials are to be wrote certain words, taken from tables confructed for the purpofe, and when the hand of one dial is placed to a certain number of words in fucceffion, that of the other directs itfelf to words which compofe the anfwer. Method of varying this Recreation, p. 164.

$$
\mathrm{T}_{2}{ }^{\prime} \text { RECRE- }
$$

${ }_{2} 7^{6}$ CONTENTS.

RECREATION XXXIX.p. 164

The box and dice.
At one end of a long hollow cafe or pedeftal (Plate XI. Fig. ו.) is drawn a circle, divided into twenty equal parts, in which are marked the points that can: be thrown by two dice. At the center of this circle is placed a magnetic needle, which is directed by a bar underneath it.: At the other end of this pedeftal is a vafe that has different divifions, in which dice are placed, that feem to be thofe thrown in at the top of the vale. When the needfe is turned round it will fop at thofe points in the circle that anfwer to thofe on the dice in the vare : the bar underneath the circle having been previoufly fet to thofe points.

RE-

RECREATION XL. p. 168

The box of forwers.
There are two cares, (Plate XI. Fig. 3 and 4) in each of which two flowers are placed, and in each of them is concealed a magnetic bar, fixed in a certain direction: thefe cafes are fut in a box of very thin wood, Fig. 2. and when the magnetic perfpective is held over them, it is readily difcovered, by the direction of the needle, what flower is in that part of the box.

RECREATION XLI. p. 170
The box of metals.
At the bottom of a box, whofe cover is as thin as poffible, (Plate XIII. Fig. 1.) are fix holes, exactly fimilar, and in thefe holes are placed tablets, that each of them contain a magnet, in a different T 3 pofition,

278 CONTENTS.
pofition, and that is covered with a thin plate of different metal. There is a magnetic perfpective, Fig. 2, that has two circles marked with the letters of the different metals, and from its center is drawn an index. If this perfpective be held over any one of the tablets, in fuch manner that its index is perpendicular to the fide of the box, the needle in the perfpective will point to the letter of the metal over which it then is. This box of metals far preferable to thofe formerly exhibited, p. 173 .

RECREATION XLII. p. 174

The magnetic oracle.

There are eight tablets that each conta.:1 a magnet, in a different pofition; there is alfo a dial marked with the digits from 1 to 8, (Plate XII. Fig. 5.) and thirty-two fmall rundlets that have the fame numbers. On the tablets queftions

CONTENTS.

279
\therefore tions are wrote, and four of the randlets contain different anfwers to each queftion. A perfon puts the dial over any one of the tablets, and turning the hand round it fops at the number which is marked on the rundlets that contain the anfwer.

RECREATON XLIII. P. 977

The incomprehenfible card.
A very thin fteel magnet is concealed in a card. You prefent a pack to a perfon that he may draw one, and offer the card with the magnet: he is then at liberty to conceal the card, or replace it, privately, in the pack, and you tell, by your perfective, whether it be there or not.

RECREATION XLIV.' p. ${ }^{1} 7^{8}$
The two magical cards.
At the bottom of a fmall box (Plate XII. Fig. 6.) a pivot is placed, on which T 4 turns

$280 \quad$ CONTENTS.

turns a pafteboard circle that contains a touched needle, and on which two cards are painted; and in the top of the box is a hole, by which thofe cards are vifible. You are to have a pack of cards that has a long and a wide card, which are the fame as thofe in the box : thefe two cards are to be drawn by two perfons, and by applying your magnetic wand to the box, either of the cards becomes vifible, at pleafure,

RECREATION XLV. p. 18 Q

The magnetic planetarium,
A round moveable pafteboard is placed at the bottom of a box, (Pl.XIII. Fig. s.) at its center a circle is drawn, and feven other circles round that ; and crofs each of thefe a magnet is fixed, Over this pafteboard another is placed, on which are drawn eight correfponding circles; in that at the center feven queftions are wrote, and in the others are words that anfwer thofe

CONTENTS. 281

thofe queftions, and on each of thefe circles turns a magnetic needle. The

- lower circle is-moved by a hand fixed to its axis, which comes through the upper circle ; and when the lower pafteboard is moved, the attraction of its magnets moves all the needles on the upper board. A perfon therefore fetting the hand to any one of the queftions in the central circle, the needles on the other circles immediately point to the words that compofe the anfwer.

CONSTRUCTION OF THE MAGNETICAL and mechanical table. p. 186.

Under the top of this table, (Plate XIV. Fig. I.) and about one inch and a half from it, is another furface, on which is placed the magnetic apparatus, by which the fubfequent recreations are performed. The legs of this table, Fig. 2, are hollow, and through them, and the ftep that joins to thicm, gocs
$282 \quad$ CONTENTS.
goes a cord, that comes out behind the partition, and paffing over a pulley, Plate XV, has a weight joined to the end of it, and to it is likewife fixed an index. On the upper furface of this table are placed, in fuccefceflion, three circles, (Plate XIV. Fig. 1,4 , and 5.) on whofe circumference are different numbers of divifions, that correfpond to the divifions in the feveral columns of the table, Plate XV. One of thefe circles is placed on that part of the table which is over the magnetic bar; on the circle is placed a fhallow bafon with water, in which floats the figure of a firen, that contains a touched needle: therefore, when the perfon behind the partition places the index on the cord againft any one divifion of the table, he will, by moving the magnetic bar under the circle, make the firen point to a letter or number in a correfponding divifion of that circle.

CONTENTS 283

RECREATION XLNI. p.t94

To make the firen of the magnetic table point to all the letters of a given word.

On three cards that are each of a different fize, are wrote the names of - three perfons or cities. Thefe three cards being given to any perfon, he keeps one of them and returns you the other two, which you lay afide without looking at them, and the firen immediately points to the letters that compore the word on the card the perfon has taken. For you diftinguilh by the touch which of the three cards is chofe, and by certain words, previoully agreed on, make it known to the confederate.

The firen is to point out the time expreffed by any given reatch., p. 195

A part of the ftep on which the operator ftands goes through the partition,
$6 \quad$ and

284 CONTENTS.
and is moveable, like a lever. The watch is laid on the table, and the operator preffes down the ftep with his foot as many times as are equal to the number of hours; which the confederate behind the partition obferving, makes the firen point to that number. A fimilar fignal is then made for the quarters and minutes.

To make the firen point to three numbers that have been chofen by three different perfons, p. 196.

Thefe three numbers are drawn from a bag, in which there are feveral divifions.; and the confederate knowing what thofe numbers are, makes the firen point to them.

GONTENTS. 285

A queftion being propofed, the firen gives the anfwer; though the perfon who exhibits the recreation does not know the quefion, p: 198.

On five cards are wrote five different queftions, but which may be all anfwered by one word. A perfon choofes any one of thefe cards, and lays the reft, afide: "the confederate knowing the word that will anfwer it, makes the firen point to the feveral letters which compofe that word.

RECREATION XLVII. p. 200

The fagacious fwan.
On the top of an oblong box (Plate XVF. Fig. 1.) is placed a fhallow bafon, in which floats the figure of a fwan, that contains a touched needle. Round this bafon are placed fix fmall vafes, and in edch of them is put an anfwer to a queftion.

286 CONTENTS.
tion: At the other end of the box is an ivory egg, or a hollow ftand. There are fix etwees, Fig. 3, of different lengths, and that each contain a queftion. A perfon having chofe one of the etwees, takes out the queftion, and puts the etwee into the egg, and by fhutting down the top of the egg preffes the etwee down the hollow ftand, and againft a movement in the box, Fig. 2, by which mean a magnetic bar is brought under a particular part of the bafon, according to the length of the etwee, and the fwan is thereby directed to the vale that contains an anfwer to the queftion.

THE COMMUNICATIVE BELL. p. 205
In a hollow circular box (Plate XVII. Fig. 1.) there is fixed a fmall bell, and at the center of the box is a pivot, on which is placed a touched needle, that has at each end a fmall brafs knob. The bottom of this box is covered with gauze.
CONTENTS.
gauze. This box is placed on the magnetic table, over that part where there is a large magnetic bar, by moving of which the touched needle on the pivot is made to frike the bell.

RECREATION XLVIII. p. 207

To tell, by the communicative bell, the card that a perfon has drawn from the pack.
The founding of the bell fignifies yes, and its filence no.-Ycu are to prefent the pack in fuch manner that the perfon will naturally draw the card you offer, and which is known to your confederate. You then alk feveral queftions ofthe bell, which your confederate refolves, either by making it found or remain filent.

To tell by the bell at what number from the top any card of a pack is placed, that a perfon ßball name, p. 208.

The cards of piquet being previoully packed, they are to be fhuffled in the
manner they will then be in a determinate order ; of which the confederate having a copy, and hearing the name of the card the perfon has chofe, makes the bell frike the number at which it is from the top.

RECREATION XLIX. p. 211

> The magnetic bulance.

A pair of ftcel fcales, that are gilt and very true, (Plate XVII. Fig. 2.) are fufpended over the magnetic table, near the part under which the bar is placed. Two pieces of money that are precifely of the fame weight being put in thefe fcales either of them is made to preponderate at pleafure. The confederate, at a fignal given, bringing the bar under one or other of the fcales.

RECRE-

CONTENTS 89

REGREATION E. pr 214

The fympathetic dials:
One of thefe dials has a catch on the outfide, by which it is fopped at pleafure: the other has afteel catch within the cafe, that takes the fly of the movement. A large bar in the magnetic table; when brought under this dial, attracts the catch and puts the wheels in motion, but when the bar is moved from it, the

- motion ceafes immediately. You therefore give the dial with the fop to a perfon, and tell him that when he fops that dial, or puts it in motion, the other on the table will, by fympathy, ftop or move alfo; and by mounting the ftep you make it act accordingly.

CONSTRUCTION OF THE MAGNETIC ROLLER. p. 217.

This roller confifts of a long and narrow piece of wood, (Pl. XVII. Fig. 5.) on which there are twelve circles, and in each of them a magnet, placed in difVol. III.

U ferent

$290 \quad \mathrm{C} O N T E N T S$.

ferent directions from the others. This: roller is placed at the bottom of the magnetic table, and moves upon two cylinders, being drawn by a fring that goes down a leg of the table, through the partition, and over a pulley placed on the other fide of it : to this ftring a weight and an index are faftened. Under the pulley is placed a table, p. 220, that has. five columns, which contain numbers, letters, the names of cards, countries, \&c. and in each of thefe columns are ten divifions that correfpond to the ten circles on the roller : fo that when the index on the ftring is fet by the confederate, againft any one of thofe divifions, the circle on the roller that anfwers to it is brought to a certain part of the magnetic table, that the bar it contains may act on the needle of fome machine to be placed over it.

CONTENTS. 29 I
 RECREATION LI. p.22I

The magician's box.
In a fall hollow box (PI. XVIII. Fig. 1.) is placed, on a pivot, a pafteboard circle, Fig. 3, which has ten equal divifions, in five of which cards, \&c. are painted, and in the middle of it is a magnetic needle. In the top of the box is a hole, nearly of the fame fire with one of the divifions on the circle. Over this box is placed a glass cover, Fig. 2, and when it is put on the magnetic table, over the roller, any part of the circle may be made vifible by bringing the proper cirche of the roller under it. A fimilar experiment with a circle that has the names of five cities wrote on it, inftead of the cards, p. 224.

RECREATION LII. p. 225

The myfical dial.
This dial has ten divifions, in which are wrote the nine digits and a cypher, and

U 2
it
$292^{\circ} \quad \mathrm{CO} \mathrm{NT}^{-1} \mathrm{~N}^{\top} \mathrm{T}$ S.
\therefore it has a magnetie needle for an inder, which points to any one of the ten divifions on the circle, according to the pofition of the magnet in the part of the roller over which it is placed. Method of fhowing by this dial the numbers that two perfons have chofe, their fum, or their product, p. 226.

RECREATION LIII.
p. 228

The magical game of all-fours.
There muft be a circle with twelve divi-, fions, on fix of which cards are painted, and to which fix of the divifions of the roller correfpond. A pack of cards are previoufly difpofed, according to the manner explained in the firf volume; fo that after the cards are dealt they can be played only one way. The other perfon plays his cards, yours remain on the table, and every time you are to play. you direct another perfon tolook in at the top of the box, (PI. XVIII. Fig.2.) and foe what card is played, your con6 federate

C O N T E N T S. $\quad 293$

federate having brought the proper card in view, by moving the roller,

RECREATION LIV. p. 23 I

The intelligent fy.

The fpace between two concentric circles contained in a box (Pl. XVIII. Fig. 5.) is divided into ten equal parts, in each of which a letter is wrote ; and at the center of the circle, is placed a pivot, that holds a magnetic needle, at the end of which is the figure of a fly: all the needle, except that part to which the fly is fixed, is concealed by a paper placed over it. There are laid on a table a parcel of cards, properly packed, and on each of them a queftion is wrote. You \therefore ank a perfon at what number the card thall be to which the fly fhall give him an anfwer. When he has determined, you place the box over the roller, and - your confederate knowing the queftion on the card, makes the fly point to the letters that compofe the anfwer.

RECRE.

RECREATION LV. p. 23^{6}

The multifarious verfe.
On eight tablets that are of the fame fize, and that exactly fill a box, (Plate XIX. , Fig. 1.): are wrote the eight words of a Latin verfe, and in each of them is placed a magnet, in a different pofition. Over this box is placed a board, Fig. 2, that has eight circles, whofe centers are directly over thofe of the tablets: round each of thefe circles are wrote the eight words of the Latin verfe, and on each of them is placed a needle. Over the board and box is placed a glafs frame, Fig. 3. If a perfon put the tablets in any pofition privately, then cover the box over with paper, and place it under the board, the needle on each circle will point to the word on the tablet under it; fo that by looking into the top of the box you will always know in what order the tablets are placed.

RECRE

CONTENTS. 259

RECREATION'LVI. p. 240

The communicative mirrar.
In a box (Plate XX. Fig. 1.) is placed a pivot, on: which is fixed a pafteboard circle, Fig. 2, that has a touched needle, and on which are painted three cards. Over this pafteboard is a hole, in the top of the box, and over that is placed a hollow glafs pedeftal,on which is fixed a tube, containing an inclined mirnor. There are three tablets that have each a card, fimilar to thofe on the circle, and a magnetic bar. One of thefe being placed in the box, Fig. 32 and that put in the other box, Fig. I $_{2}$ under the circle, it will place itfelf in a correfponding pofition; fo that a perfon looking into the tube will fee the fame card as that on the tablet concealed in the box, and he will feem to fee it in the mirror placed oppofite the tube.

R E-

296 CONTENTS.

RECREATION LVII. p. 243

The box of dice by reffection.

At each end of a long box (PI. XX. Fig. 4.) is a fmall hole, and over the ends are placed two hollow cubes; under each of thefe cubes is an inclined mirror, and a fmall touched needle on a pivot. The top and two longeft fides of this box are of glafs, lined with a thin paper. There are two dice, that have concealed in each of their fides a fmall magnet: fo that when there dice are placed in the cubes, in any pofition, you will fee, by looking in at the hole at each end of the box, the pofition of the needle under each cube, and confequently difcover which fide of each die is next the top of the box.

[^14]-

[^0]: * By the Leyden experiment is here meant the fhock that is given by two wires, communicating with the two fides of a charged coated glafs or phial.

 $$
 \mathrm{C}_{4} \quad \text { flould }
 $$

[^1]: * A lefs nümber, however, will be quite'fufficient for common purpofes: on the contrary; where a very great force is wanted, two or more batteries may be connected, and feparate jars added, to them.

[^2]: * Inftead of this wire with a cork, the jars of fome batteries have wires bent double, whofe lower parts are fprings, fo that they touch the fides of the jar next the bottom, without coming near the top.
 Vol. III.
 D
 the

[^3]: * In the dark a continual fafhing of light will be feen between the clappers and the bells, and when the electrification is very ftrong; thefe flafhes of light will be fo large, that they will be tranfmitted by the clapper from one bell to the other, without its ever coming into actual contact with either of them; and confequently the ringing will ceafe.
 gold,

[^4]: * This is an American invention, and was firt defcribed by Dr. Franklin.

[^5]: * If you have not the figure of a crown, a guinea or thilling will fhew the experiment equally wehl.

 $$
 \mathrm{E}_{4} \text { touch }
 $$

[^6]: F_{4} RECRE.

[^7]: * The mock may be made to pafs through any particular part of the body, without much affecting the ref, 'if that part, and no' other, be brought into the circuit through which the fire mult pafs from pone fide of the jar or battery to the other.

[^8]: * M. Monnier of Paris is faid to have comminicated this mock through a line of men, and other conductors; of 900 toifes, that is, more than an Englifh mile; and Abbé Nollet performed the fame experiment upon 200 perfons, ranged in two parallel ranks.

[^9]: * The poles of a magnet are found by holding a very fine fhort needle over it; for where the Vol. III.

[^10]: * To perform this experiment you muft ufe a ftrong magnetic bar, and the balance, of the watch muft not be of brafs, but fee!.

[^11]: Vol. III. L diverfion

[^12]: M 2
 queftions

[^13]: * Inftead of a firen you may form a fmall fifi of very thin copper, and hollow; or a fmall boat; or any other figure you pleafe.

[^14]: THE END OF TEE THIRD VOLUME.

